Have a personal or library account? Click to login

APPLICATION OF THE ANALYTIC HIERARCHY PROCESS (AHP) FOR ACOUSTIC ADAPTATION OF CLASSROOMS

Open Access
|Aug 2018

References

  1. Tanic, M., Stankovic, D., Kostic, I., Nikolic, V., Petrovic, M., Kondic, S. (2016). Pedagogical Implications of the Concepts of the Classroom in Europe: The Key Historical Layers, Tendencies and Influential Lines. Journal of Asian Architecture and Building Engineering, 15(1), 1–8.10.3130/jaabe.15.1
  2. Ito, K., Murakami, S. (2010). Cost-effectiveness Analysis of Improved Indoor Temperature and Ventilation Conditions in School Buildings. Journal of Asian Architecture and Building Engineering, 9(2), 523–529.10.3130/jaabe.9.523
  3. Kielb, C., Lin, S., Muscatiello, N., Hord, W., Rogers- Harrington, J., Healy, J. (2014). Building-related health symptoms and classroom indoor air quality: a survey of school teachers in New York State. Indoor Air, 25(4), 371–380.10.1111/ina.12154
  4. Agarwal, N., Shiva Nagendra, S.M. (2016). Modelling of particulate matters distribution inside the multilevel urban classrooms in tropical climate for exposure assessment. Build. Environ., 102, 73–82.10.1016/j.buildenv.2016.03.015
  5. Krüger, E.L., Zannin, P.H.T. (2004). Acoustic, thermal and luminous comfort in classrooms. Build. Environ., 39(9), 1055–1063.10.1016/j.buildenv.2004.01.030
  6. Nowoświat, A., Olechowska, M. (2016). Investigation Studies on the Application of Reverberation Time. Arch. Acoust., 41(1), 15–26.10.1515/aoa-2016-0002
  7. Houtgast, T., Steeneken, H.J.M. (1973). The Modulation Transfer Function in room acoustics as a predictor of speech intelligibility. Acoustica, 28, 66–73.10.1121/1.1913632
  8. Olechowska, M., Ślusarek, J. (2016). Analysis of selected methods used for the reverberation time estimation. Architecture Civil Engineering Environment 9(4), 79–87.10.21307/acee-2016-054
  9. Nowoświat, A., Olechowska, M. (2016). Fast estimation of speech transmission index using the reverberation time. Appl. Acoust., 102, 55–61.10.1016/j.apacoust.2015.09.001
  10. Weinzierl, S., Vorländer, M. (2015). Room acoustical parameters as predictors of room acoustical impression: What do we know and what would we like to know? Acoust. Aust., 43(1), 41–48.10.1007/s40857-015-0007-6
  11. Hodgson, M. (1999). Experimental investigation of the acoustical characteristics of University classrooms. J. Acoust. Soc. Am. 106(4), 1810–1819.10.1121/1.427931
  12. Bistafa, S.R., Bradley, J.S. (2000). Predicting reverberation times in a simulated classroom. J. Acoust. Soc. Am., 108, 1721–1731.10.1121/1.1310191
  13. Mikulski, W., Radosz, J. (2011). Acoustics of Classrooms in Primary Schools – Results of the Reverberation Time and Speech Transmission Index Assessments in Selected Buildings. Arch. Acoust., 36(4), 777–793.10.2478/v10168-011-0052-6
  14. Nowoświat, A., Bochen, J., Dulak, L., Żuchowski, R. (2016). Investigation studies involving sound absorbing parameters of roadside screen panels subjected to aging in simulated conditions. Appl. Acoust. 111, 8–15.10.1016/j.apacoust.2016.04.001
  15. Tomiku, R., Otsuru, T., Takahashi, Y. (2002). Finite Element Sound Field Analysis of Diffuseness in Reverberation Rooms. Journal of Asian Architecture and Building Engineering, 1(2), 33–39.10.3130/jaabe.1.2_33
  16. Nowoświat, A., Olechowska, M., Ślusarek, J. (2016). Prediction of reverberation time using the residual minimization method. Appl. Acoust., 106, 42–50.10.1016/j.apacoust.2015.12.024
  17. Cabrera, D., Xun, J., Guski, M. (2016). Calculating Reverberation Time from Impulse Responses: A Comparison of Software Implementations. Acoust. Aust., 44, 369–378.10.1007/s40857-016-0055-6
  18. Rizzo, F., Zazzini, P. (2016). Improving the acoustical properties of an elliptical plan space with a cable net membrane roof. Acoust. Aust. 44(3), 449–456.10.1007/s40857-016-0072-5
  19. Batubara, M., Tanimura, H., Asikhia, M.O., Toshimori, A. (2002). An Application of the AHP to Urban Residential Upgrading in Jakarta. Journal of Asian Architecture and Building Engineering, 1(1), 253–259.10.3130/jaabe.1.253
  20. Liu, J., Yao, R., McCloy, R. (2012). A method to weight three categories of adaptive thermal comfort. Energy and Buildings, 47, 312–320.10.1016/j.enbuild.2011.12.007
  21. Chung, H.J., Kim, S., Yang, J. (2017). Extraction and Analysis of Technical Management Factors for Passive Houses in Korea. Journal of Asian Architecture and Building Engineering, 16(1), 75–82.10.3130/jaabe.16.75
  22. Madbouly, A.I., Noaman, A.Y., Ragab, A.H.M., Khedra, A.M., Fayoumi, A.G. (2016). Assessment model of classroom acoustics criteria for enhancing speech intelligibility and learning quality. Appl. Acoust., 114, 147–158.10.1016/j.apacoust.2016.07.018
  23. ISO 3382-1:2009. Acoustics – Measurement of room acoustic parameters – Part 1: Performance spaces.
  24. ISO 3382-2:2008. Acoustics – Measurement of room acoustic parameters – Part 2: Reverberation time in ordinary rooms.
  25. Plomp, R., Steeneken, H.J.M., Hotgast, T. (1980). Predicting Speech Intelligibility in Rooms from the Modulation Transfer Function II. Mirror image computer model applied rectangular rooms. Acustica, 46, 74.
  26. Houtgast, T., Steeneken, H.J.M. (1984). A Multi – Language Evaluation of the RASTI – Method for Estimating Speech Intelligibility in Auditoria. Acustica, 54(4), 185–199.
  27. Houtgast, T., Steeneken, H.J.M. (1985). A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. J. Acoust. Soc. Am., 77(3), 1069–1077.10.1121/1.392224
  28. Passero, C.R.M., Zannin, P.H.T. (2010). Statistical comparison of reverberation times measured by the integrated impulse response and interrupted noise methods, computationally simulated with ODEON software, and calculated by Sabine, Eyring and Arau- Puchades’ formulas. Appl. Acoust., 71, 1204–1210.10.1016/j.apacoust.2010.07.003
  29. Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. Mathematical Psychology, 15(3), 234–281.10.1016/0022-2496(77)90033-5
  30. Nowoświat, A., Leszczyńska, M. (2016). Application of hierarchical analysis method to design the structural partitions with different material and structural solutions for window glazing. Architecture Civil Engineering Environment, 9(3), 95–104.10.21307/acee-2016-038
  31. PN-B-02151-4. Akustyka budowlana. Ochrona przed hałasem w budynkach. Cześć 4. Wymagania dotyczące warunków pogłosowych i zrozumiałości mowy w pomieszczeniach. (ang. Building acoustics. Protection against noise in buildings. Part 4. Requirements for reverberation and speech intelligibility in rooms).
  32. Nowoświat A., Olechowska M. (2017). Estimation of reverberation time in classrooms, using the Residual Minimization Method. Arch. Acoust., 42(4), 609–617.10.1515/aoa-2017-0065
DOI: https://doi.org/10.21307/acee-2017-052 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 73 - 87
Submitted on: Jul 3, 2017
Accepted on: Dec 1, 2017
Published on: Aug 28, 2018
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 Artur NOWOŚWIAT, Florentyna SZURMAN, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.