Have a personal or library account? Click to login
Enzymatic Hydrogen Bioproduction. Structure, Function And Application Of Hydrogenases Cover

Enzymatic Hydrogen Bioproduction. Structure, Function And Application Of Hydrogenases

Open Access
|Sep 2021

References

  1. Abou Hamdan A., Dementin S.: et al. O2-independent formation of the inactive states of NiFe hydrogenase. Nat. Chem. Biol. 9, 15–17 (2013)
  2. Angenent L.T., Karim K., Al-Dahhan M.H., Wrenn B.A., Domíguez-Espinosa R.: Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22, 477–485 (2004)
  3. Arnon D.I., Losada M., Nozaki M., Tagawa K.: Photoproduction of hydrogen, photofixation of nitrogen and a unified concept of photosynthesis. Nature, 190, 601–606 (1961)
  4. Balat M.: Production of hydrogen via biological processes. Energ. Source Part A, 20, 1802–1812 (2009)
  5. Balat M.: Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen. Energ. 33, 4013–4029 (2008)
  6. Ballantine S.P., Boxer D.H.: Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J. Bacteriol. 163, 454–459 (1985)
  7. Barbosa T.M., Baltazar C.S.A., Cruz D.R., Lousa D., Soares C.M.: Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases. Sci. Rep. 10, 10540 (2020)
  8. Brazzolotto X., Rubach J.K., Gaillard J., Gambarelli S., Atta M., Fontecave M.: The [Fe-Fe]-Hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an Iron-Sulfur Cluster. J. Biol. Chem. 281, 769–774 (2006)
  9. Bruschi M., Greco C., Kaukonen M., Fantucci P., Ryde U., De Gioia L.: Influence of the [2Fe]H subcluster environment on the properties of key intermediates in the catalytic cycle of [FeFe] hydrogenases: hints for the rational design of synthetic catalysts. Angew. Chem. Int. Edit. 48, 3503–3506 (2009)
  10. Calusinska M., Happe T., Joris B., Wilmotte A.: The surprising diversity of clostridial hydrogenases: A comparative genomic perspective. Microbiology, 156, 1575–1588 (2010)
  11. Cameron A.G.W.: Abundances of the elements in the solar system. Space Sci. Rev. 15, 121–146 (1973)
  12. Cammack R.: Hydrogenase sophistication. Nature, 397, 214–215 (1999)
  13. Constant P., Hallenbeck P.C.: Hydrogenase (w) Biohydrogen (Second Edition), red. A. Pandey, S. Mohan, J-S. Chang, P.C. Hallenbeck, C. Larroche, Elsevier, 2019, s. 49–78
  14. Debabrata D., Namita K., Nejat Veziroğlu T.: Recent developments in biological hydrogen production processes. Chem. Ind. Chem. Eng. Q. 14, 57–67 (2008)
  15. Dementin S., Burlat B., Fourmond V., Leroux F., Liebgott P-P., Hamdan A.A., Léger C., Rousset M., Guigliarelli B., Bertrand P.: Rates of intra- and intermolecular electron transfers in hydrogenase deduced from steady-state sctivity measurements. J. Am. Chem. Soc. 133, 10211–10221 (2011)
  16. Edwards J.K., Solsona B., Ntainjua E.N., Carley AF., Herzing A.A., Kiely C.J., Hutchings G.J.: Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science, 323, 1037–1041 (2009)
  17. English C.M., Eckert C., Brown K., Seibert M., King P.W.: Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans. 45, 9970–9978 (2009)
  18. Fontecilla-Camps J.C., Volbeda A., Cavazza C., Nicolet Y.: Structure/Function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007)
  19. Frielingsdorf S., Schubert T., Pohlmann A., Lenz O., Friedrich B.: A trimeric supercomplex of the oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha H16. Biochemistry-US, 50, 10836–10843 (2011)
  20. Fritsch J., Lenz O., Friedrich B.: Structure, function and biosynthesis of O2-tolerant hydrogenases. Nat. Rev. Microb. 11, 106–114 (2013)
  21. Fritsch J., Scheerer P., Frielingsdorf S., Kroschinsky S., Friedrich B., Lenz O., Spahn C.M.T.: The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature, 479, 249–252 (2011)
  22. Goris T., Lenz O.: et al. A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat. Chem. Biol. 7, 310–318 (2011)
  23. Greening C., Biswas A., Carere C.R., Jackson C.J., Taylor M.C., Stott M.B., Cook G.M., Morales S.E.: Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016)
  24. Guo Y., Cramer S.P.: et al. Characterization of the Fe site in iron-sulfur-cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS). Inorg. Chem. 47, 3969–3977 (2008)
  25. Hambourger M., Gervaldo M., Svedruzic D., King P.W., Gus D., Ghirardi M., Moore A.L., Moore T.A.: [FeFe]-Hydrogenase-Catalyzed H2 production in a photoelectrochemical biofuel cell. J. Am. Chem. Soc. 130, 2015–2022 (2008)
  26. Happe T., Hemschemeier A., Winkler M., Kaminski A.: Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Sci. 7, 246–250 (2002)
  27. Hidese R., Ataka K., Bill E., Shima S.: CuI and H2O2 Inactivate and FeII inhibits [Fe]-hydrogenase at very low concentrations. ChemBioChem. 16, 1861–1865 (2015)
  28. Higuchi Y., Yagi T., Yasuoka N.: Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure, 5, 1671–1680 (1997)
  29. Hiromoto T., Warkentin E., Moll J., Ermler U., Shima S.: The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activation. Angew. Chem. Int. Edit. 48, 6457–6460 (2009)
  30. Huang G., Wagner T., Ermler U., Bill E., Ataka K., Shima S.: Dioxygen sensitivity of [Fe]-hydrogenase in the presence of reducing substrates. Angew. Chem. Int. Edit. 57, 4917–4920 (2018)
  31. Ihara M., Okura I.: et al. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem. Photobiol. 82, 676–682 (2006)
  32. Kalms J., Scheerer P.: et al. Tracking the route of molecular oxygen in O2-tolerant membrane-bound [NiFe] hydrogenase. PNAS, 115, E2229–E2237 (2018)
  33. Kanai T., Matsuoka R., Beppu H., Nakajima A., Okada Y., Atomi H., Imanaka T.: Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic Archaeon Thermococcus kodakarensis. J. Bacteriol. 193, 3109–3116 (2011)
  34. Karyakin A.A., Morozov S.V., Karyakina E.E., Zorin N.A., Perelygin V.V., Cosnier S.: Hydrogenase electrodes for fuel cells. Biochem. Soc. T. 33, 73–75 (2005)
  35. Kim D-H., Kim M-S.: Hydrogenases for biological hydrogen production. Bioresource Technol. 102, 8423–84231 (2011)
  36. King P.W., Posewitz M.C., Ghirardi M.L., Seibert M.: Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J. Bacteriol. 188, 2163–2172 (2006)
  37. Knörzer P., Silakov A., Foster C.E., Armstrong F.A., Lubitz W., Happe T.: Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. J. Biol. Chem. 287, 1489–1499 (2012)
  38. Krassen H., Schwarze A., Friedrich B., Ataka K., Lenz O., Heberle J.: Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano, 3, 4055–4061 (2009)
  39. Kruse S., Goris T., Wolf M., Wei X., Diekert G.: The NiFe hydrogenases of the tetrachloroethene-respiring Epsilonproteobacterium Sulfurospirillum multivorans: biochemical studies and transcription analysis. Front. Microbiol. 8, e444 (2017)
  40. Kubas G.J.: Fundamentals of H2binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem. Rev. 107, 4152–4205 (2007)
  41. Kuchenreuther J.M., George S.J.: et al. The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science, 343, 424–427 (2014)
  42. Lamle S.E., Albracht S.P.J., Armstrong F.A.: Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: Insights into the puzzling difference between unready and ready oxidized inactive states. J. Am. Chem. Soc. 126, 14899–14909 (2004)
  43. Liu Z-P., Hu P.: Mechanism of H2 metabolism on Fe-only hydrogenases. J. Chem. Phys. 117, 8177–8180 (2002)
  44. Lojou E.: Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces. Electrochim. Acta, 56, 10385–10397 (2011)
  45. Lorent Ch., Katz S., Duan J., Kulka C.J., Caserta G.: et al. Shedding light on proton and electron dynamics in [FeFe] hydrogenases. J. Am. Chem. Soc. 142, 5493–5497 (2020)
  46. Lubitz W., Ogata H., Rüdiger O., Reijerse E.: Hydrogenases. Chem. Rev. 114, 4081–4148 (2014)
  47. Lubner C.E., Knörzer P., Silva P.J.N., Vincent K.A., Happe T., Bryant D.A., Golbeck J.H.: Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry, 49, 10264–10266 (2010)
  48. Lyon E.J., Shima S., Boecher R., Thauer R.K., Grevels F.W., Bill E., Roseboom W., Albracht S.P.J.: Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J. Am. Chem. Soc. 126, 14239–14248 (2004)
  49. Marques M.C., Tapia C., Gutiérrez-Sanz O., Ramos A.R., Keller K.L., Wall J.D., De Lacey A.L., Matias P.M., Pereira I.A.C.: The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis. Nat. Chem. Biol. 13, 544–550 (2017)
  50. Mertens R., Liese A.: Biotechnological applications of hydrogenases. Curr. Opin. Biotech. 15, 343–348 (2004)
  51. Meyer J.: [FeFe] hydrogenases and their evolution: a genomic perspective. Cell. Mol. Life Sci. 64, 1063 (2007)
  52. Morra S., Valetti F., Sarasso V., Castrignanò S., Sadeghi S.J., Gilardi G.: Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringens. Bioelectrochemistry, 106, 258–262 (2015)
  53. Mulder D.W., Boyd E.S., Sarma R., Lange R.K., Endrizzi J.A., Broderick J.B., Peters J.W.: Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature, 465, 248–251 (2010)
  54. Mulder D.W., Ortillo D.O., Gardenghi D.J., Naumov A.V., Ruebush S.S., Szilagyi R.K., Huynh B., Broderick J.B., Peters J.W.: Activation of HydA(DeltaEFG) requires a preformed [4Fe-4S] cluster. Biochemistry, 48, 6240–6248 (2009)
  55. Nedoluzhko A.I., Shumilin I.A., Mazhorova L.E., Popov V.O., Nikandrov V.V.: Enzymatic oxidation of cadmium and lead metals photodeposited on cadmium sulfide. Bioelectrochemistry, 53, 61–71 (2001)
  56. Nicolet Y., de Lacey A.L., Vernède X., Fernandez V.M., Hatchikian E.C., Fontecilla-Camps J.C.: Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 123, 1596–1601 (2001)
  57. Nicolet Y., Fontecilla-Camps J.C.: Structure-Function relationships in [FeFe]-hydrogenase active site maturation. J. Biol. Chem. 287, 13532–13540 (2012)
  58. Nicolet Y., Piras C., Legrand P., Hatchikian C.E., Fontecilla-Camps J.C.: Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure, 7, 13–23 (1999)
  59. Nishikawa K., Ogata H., Higuchi Y.: Structural Basis of the Function of [NiFe]-hydrogenases. Chem. Lett. 49, 164–173 (2020)
  60. Ogata H., Lubitz W., Higuchi Y.: Structure and function of [NiFe] hydrogenases. J. Biochem. 160, 251–258 (2016)
  61. Ono K.: Fundamental theories on a combined energy cycle of electrostatic induction hydrogen electrolytic cell and fuel cell to produce fully sustainable hydrogen energy. IEEJ T. Fund. Mat. 133, 615–621 (2013)
  62. Pagnier A., Martin L., Zeppieri L., Nicolet Y., Fontecilla-Camps J.C.: CO and CN− syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. PNAS, 113, 104–109 (2016)
  63. Pandelia M-E., Fourmond V., Tron-Infossi P., Lojou E., Bertrand P., Léger C., Giudici-Orticoni M-T., Lubitz W.: Membrane-bound hydrogenase I from the Hyperthermophilic Bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J. Am. Chem. Soc. 132, 6991–7004 (2010)
  64. Peters J.W., Lanzilotta W.N., Lemon B.J., Seefeldt L.C.: X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science, 282, 1853–1858 (1998)
  65. Peters J.W., Schut G.J., Boyd E.S., Mulder D.W., Shepard E.M., Broderick J.B., King P.W., Adams M.W.W.: [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta, 1853, 1350–1369 (2015)
  66. Pierik A.J., Hulstein M., Hagen W.R., Albracht S.P.J.: A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur. J. Biochem. 258, 572–578 (1998)
  67. Posewitz M.C., King P.W., Smolinski S.L., Zhang L., Seibert M., Ghirardi M.L.: Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem. 279, 25711–25720 (2004)
  68. Posewitz M.C., Mulder D.W., Peters J.W.: New frontiers in hydrogenase structure and biosynthesis. Curr. Chem. Biol. 2, 178–199 (2008)
  69. Reisner E., Fontecilla-Camps J.C., Armstrong F.A.: Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun. 5, 550–552 (2009)
  70. Reissmann S., Hochleitner E., Wang H., Paschos A., Lottspeich F., Glass R.S., Böck A.: Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science, 299, 1067–1070 (2003)
  71. Rubach J.K., Brazzolotto X., Gaillard J., Fontecave M.: Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Lett. 579, 5055–5060 (2005)
  72. Rupprecht J., Hankamer B., Mussgnug J.H., Ananyev G., Dismukes C., Kruse O., Perspectives and advances of biological H2 production in microorganisms. Appl. Microbiol. Biot. 72, 442–449 (2006)
  73. Salomone-Stagni M., Stellato F., Whaley CM., Vogt S., Morante S., Shima S., Rauchfuss T.B., Meyer-Klaucke W.: The iron-site structure of [Fe]-hydrogenase and model systems: an X-ray absorption near edge spectroscopy study. Dalton Trans. 39, 3057–3064 (2010)
  74. Schoelmerich M.C., Müller V.: Energy-converting hydrogenases: the link between H2 metabolism and energy conservation. Cell. Mol. Life Sci. 77, 1461–1481 (2020)
  75. Shafaat H.S., Rüdiger O., Ogata H., Lubitz W.: [NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditions. BBA-Bioenergetics, 1827, 986–1002 (2013)
  76. Shepard E.M, Broderick J.B.: et al. [FeFe]-Hydrogenase maturation: HydG-catalyzed synthesis of carbon monoxide. J. Am. Chem. Soc. 132, 9247–9249 (2010)
  77. Shepard E.M., McGlynn S.E., Bueling A.L., Grady-Smith C.S., George S.J., Winslow M.A., Cramer S.P., Peters J.W., Broderick J.B.: Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. PNAS, 107, 10448–10453 (2010)
  78. Shima S., Pilak O., Vogt S., Schick M., Stagni M.S., Meyer-Klaucke W., Warkentin E., Thauer R.K., Ermler U.: The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science, 321, 572–575 (2008)
  79. Shima S., Thauer R.K.: A third type of hydrogenase catalyzing H2 activation. Chem. Rec. 7, 37–46 (2007)
  80. Shima S., Vogt S., Göbels A., Bill E.: Iron-chromophore circular dichroism of [Fe]-hydrogenase: The conformational change required for H2 activation. Angew. Chem. Int. Edit. 49, 9917–9921 (2010)
  81. Shomura Y., Higuchi Y.: Structural aspects of [NiFe]-hydrogenases. Rev. Inorg. Chem. 33, 173–192 (2013)
  82. Show K-Y., Lee D-J.: Bioreactor and bioprocess design for biohydrogen production (w) Biohydrogen red. A. Pandey, J-S. Chang, P.C. Hallenbeck, C. Larroche, Elsevier, 2013, s. 317–337
  83. Soboh B., Stripp S.T., Muhr E., Granich C., Braussemann M., Herzberg M., Heberle J., Gary Sawers R.: [NiFe]-hydrogenase maturation: isolation of a HypC-HypD complex carrying diatomic CO and CN− ligands. FEBS Lett. 586, 3882–3887 (2012)
  84. Søndergaard D., Pedersen C.N.S., Greening C.: HydDB: A web tool for hydrogenase classification and analysis. Sci. Rep-UK. 6, 34212 (2016)
  85. Sun J., Hopkins R.C., Jr F.E.J., McTernan P.M., Adams M.W.W.: Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: A key enzyme in biofuel production. PLOS ONE, 5, e10526 (2010)
  86. Teng Y., Xu Y., Wang X., Christie P.: Function of biohydrogen metabolism and related microbial communities in environmental bioremediation. Front. Microbiol. 10, 106 (2019)
  87. Thauer R.K.: Hydrogenases and the global H2 cycle. Eur. J. Inorg. Chem. 2011, 919–921 (2011)
  88. Trohalaki S., Pachter R.: Mechanism of hydrogen production in [Fe–Fe]-hydrogenases: A quantum mechanics/molecular mechanics study. Int. J. Hydrogen Energ. 35, 5318–5331 (2010)
  89. Tye J.W., Hall M.B., Darensbourg M.Y.: Better than platinum? Fuel cells energized by enzymes. PNAS, 102, 16911–16912 (2005)
  90. Vignais P.M., Billoud B., Meyer J.: Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455–501 (2001)
  91. Vignais P.M., Billoud B.: Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007)
  92. Vignais P.M., Colbeau A.: Molecular biology of microbial hydrogenases. Curr. Issues Mol. Biol. 6, 159–188 (2004)
  93. Vignais P.M., Toussaint B.: Molecular biology of membrane-bound H2 uptake hydrogenases. Arch. Microbiol. 161, 1–10 (1994)
  94. Vincent K.A., Cracknell JA., Lenz O., Zebger I., Friedrich B., Armstrong F.A.: Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. PNAS, 102, 16951–16954 (2005)
  95. Volbeda A., Amara P., Iannello M., De Lacey A.L., Cavazza C., Fontecilla-Camps J.C.: Structural foundations for the O2 resistance of Desulfomicrobium baculatum [NiFeSe]-hydrogenase. Chem. Commun. (Camb.) 49, 7061–7063 (2013)
  96. Wait A.F., Parkin A., Morley G.M., dos Santos L., Armstrong F.A.: Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalyst. J. Phys. Chem. C. 114, 12003–12009 (2010)
  97. Watanabe S., Matsumi R., Arai T., Atomi H., Imanaka T., Miki K.: Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: Insights into cyanation reaction by thiol redox signaling. Mol. Cell. 27, 29–40 (2007)
  98. Wu C-H., Haja D.K., Adams M.W.W.: Cytoplasmic and membrane-bound hydrogenases from Pyrococcus furiosus (w) Methods in Enzymology, red. F. Armstrong, Academic Press, 2018, s. 153–168
  99. Wu C-H., McTernan P.M., Walter M.E., Adams M.W.W.: Production and application of a soluble hydrogenase from Pyrococcus furiosus. Archaea, 2015, Article ID 912582 (2015)
  100. Wu L-F., Mandrand M.A.: Microbial hydrogenases: Primary structure, classification, signatures and phylogeny. FEMS Microbiol. Lett. 104, 243–269 (1993)
  101. Wulff P., Thomas C., Sargent F., Armstrong F.A.: How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure. J. Biol. Inorg. Chem. 21, 121–134 (2016)
  102. Xu T., Yin C-J.M., Wodrich M.D., Mazza S., Schultz K.M., Scopelliti R., Hu X.: A Functional model of [Fe]-hydrogenase. J. Am. Chem. Soc. 138, 3270–3273 (2016)
  103. Yoon K.S, Fukuda K, Fujisawa K, Nishihara H: Purification and characterization of a highly thermostable, oxygen-resistant, respiratory [NiFe]-hydrogenase from a marine, aerobic hydrogen-oxidizing bacterium Hydrogenovibrio marinus. Int. J. Hydrogen Energ. 36, 7081–7088 (2011)
DOI: https://doi.org/10.21307/PM-2021.60.3.19 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 231 - 239
Submitted on: Jul 1, 2020
Accepted on: Jan 1, 2021
Published on: Sep 23, 2021
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Małgorzata Witkowska, Agnieszka Żylicz-Stachula, Anna Struck, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.