References
- Abouelhadid S., North S.J., Hitchen P., Vohra P., Chintoan--Uta C., Stevens M., Dell A., Cuccui J., Wren B.W.: Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial Pathogen. MBio, 10, (2019)
- Aebi M.: N-linked protein glycosylation in the ER. Biochim. Biophys. Acta, 1833, 2430–2437 (2013)
- Alaimo C., Catrein I., Morf L., Marolda C.L., Callewaert N., Valvano M.A., Feldman M.F., Aebi M.: Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J., 25, 967–976 (2006)
- Anonsen J.H., Vik A., Borud B., Viburiene R., Aas F.E., Kidd S.W., Aspholm M., Koomey M.: Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica. J. Bacteriol. 198, 256–267 (2016)
- Anonsen J.H., Vik A., Egge-Jacobsen W., Koomey M.: An extended spectrum of target proteins and modification sites in the general O-linked protein glycosylation system in Neisseria gonorrhoeae. J. Proteome Res. 11, 5781–5793 (2012)
- Arora S.K., Neely A.N., Blair B., Lory S., Ramphal R.: Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect. Immun. 73, 4395–4398 (2005)
- Baraldo K., Mori E., Bartoloni A., Norelli F., Grandi G., Rappuoli R., Finco O., Del Giudice G.: Combined conjugate vaccines: enhanced immunogenicity with the N19 polyepitope as a carrier protein. Infect. Immun. 73, 5835–5841 (2005)
- Barel M., Charbit A.: Role of Glycosylation/Deglycolysation Processes in Francisella tularensis Pathogenesis. Front. Cell Infect. Microbiol. 7, 71 (2017)
- Benz I., Schmidt M.A.: Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol. Microbiol. 40, 1403–1413 (2001)
- Bhat A.H., Maity S., Giri K., Ambatipudi K.: Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit. Rev. Microbiol. 45, 82–102 (2019)
- Borud B., Viburiene R., Hartley M.D., Paulsen B.S., Egge-Jacobsen W., Imperiali B., Koomey M.: Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation system. Proc. Natl. Acad. Sci. USA, 108, 9643–9648 (2011)
- Broker M., Dull P.M., Rappuoli R., Costantino P.: Chemistry of a new investigational quadrivalent meningococcal conjugate vaccine that is immunogenic at all ages. Vaccine, 27, 5574–5580 (2009)
- Cain J.A., Dale A.L., Niewold P., Klare W.P., Man L., White M.Y., Scott N.E., Cordwell S.J.: Proteomics Reveals Multiple Phenotypes Associated with N-linked Glycosylation in Campylobacter jejuni. Mol. Cell Proteomics. 18, 715–734 (2019)
- Cain J.A., Dale A.L., Sumer-Bayraktar Z., Solis N., Cordwell S.J.: Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. Mol. Omics. 16, 287–304 (2020)
- Chang I.J., He M., Lam C.T.: Congenital disorders of glycosylation. Ann. Transl. Med. 6, 477 (2018)
- Chludzinska A., Chrostek L., Cylwik B.: The alterations of proteins glycosylation in rheumatic diseases. Pol. Merkur. Lekarski, 33, 112–116 (2012)
- Chou W.K., Dick S., Wakarchuk W.W., Tanner M.E.: Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthase. J. Biol. Chem. 280, 35922–35928 (2005)
- Cook M.C., Kaldas S.J., Muradia G., Rosu-Myles M., Kunkel J.P.: Comparison of orthogonal chromatographic and lectin-affinity microarray methods for glycan profiling of a therapeutic monoclonal antibody. J. Chromatogr. B. Technol. Biomed. Life Sci. 997, 162–178 (2015)
- Corfield A.: Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem. Cell Biol. 147, 119–147 (2017)
- Cortina M.E., Balzano R.E., Rey Serantes D.A., Caillava A.J., Elena S., Ferreira A.C., Nicola A.M., Ugalde J.E., Comerci D.J., Ciocchini A.E.: A bacterial glycoengineered antigen for improved serodiagnosis of porcine brucellosis. J. Clin. Microbiol. 54, 1448–1455 (2016)
- Cuccui J., Thomas R.M., Moule M.G., D’Elia R.V., Laws T.R., Mills D.C., Williamson D., Atkins T.P., Prior J.L., Wren B.W.: Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open Biol. 3, 130002 (2013)
- Cullen T.W., O’Brien J.P., Hendrixson D.R., Giles D.K., Hobb R.I., Thompson S.A., Brodbelt J.S., Trent M.S.: EptC of Campylobacter jejuni mediates phenotypes involved in host interactions and virulence. Infect. Immun. 81, 430–440 (2013)
- Cummings R.D.: Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj. J. 36, 241–257 (2019)
- de Zoete M.R., Keestra A.M., Wagenaar J.A., van Putten J.P.: Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin. J. Biol. Chem. 285, 12149–12158 (2010)
- DiGiandomenico A., Matewish M.J., Bisaillon A., Stehle J.R., Lam J.S., Castric P.: Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity. Mol. Microbiol. 46, 519–530 (2002)
- Dubb R.K., Nothaft H., Beadle B., Richards M.R., Szymanski C.M.: N-glycosylation of the CmeABC multidrug efflux pump is needed for optimal function in Campylobacter jejuni. Glycobiology, 30, 105–119 (2020)
- Eichler J., Koomey M.: Sweet New Roles for Protein Glycosylation in Prokaryotes. Trends Microbiol. 25, 662–672 (2017)
- Elango D., Schulz B.L.: Phase-Variable Glycosylation in Nontypeable Haemophilus influenzae. J. Proteome Res. 19, 464–476 (2020)
- Ewing C.P., Andreishcheva E., Guerry P.: Functional characterization of flagellin glycosylation in Campylobacter jejuni 81–176. J. Bacteriol. 191, 7086–7093 (2009)
- Feldman M.F., Wacker M., Hernandez M., Hitchen P.G., Marolda C.L., Kowarik M., Morris H.R., Dell A., Valvano M.A., Aebi M.: Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. U S A, 102, 3016–3021 (2005)
- Freeze H.H.: Understanding human glycosylation disorders: biochemistry leads the charge. J. Biol. Chem. 288, 6936–6945 (2013)
- Gabius H.J., Roth J.: An introduction to the sugar code. Histochem. Cell Biol. 147, 111–117 (2017)
- Garcia-Quintanilla F., Iwashkiw J.A., Price N.L., Stratilo C., Feldman M.F.: Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front. Microbiol. 5, 381 (2014)
- Glover K.J., Weerapana E., Chen M.M., Imperiali B.: Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry, 45, 5343–5350 (2006)
- Godzik A.: Metagenomics and the protein universe. Curr. Opin. Struct. Biol. 21, 398–403 (2011)
- Goon S., Kelly J.F., Logan S.M., Ewing C.P., Guerry P.: Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 50, 659–671 (2003)
- Grass S., Lichti C.F., Townsend R.R., Gross J., St Geme J.W., 3rd: The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin. PLoS Pathog. 6, e1000919 (2010)
- Gross J., Grass S., Davis A.E., Gilmore-Erdmann P., Townsend R.R., St Geme J.W., 3rd: The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. J. Biol. Chem. 283, 26010–26015 (2008)
- Gudelj I., Lauc G., Pezer M.: Immunoglobulin G glycosylation in aging and diseases. Cell Immunol. 333, 65–79 (2018)
- Guerry P.: Campylobacter flagella: not just for motility. Trends Microbiol. 15, 456–461 (2007)
- Guerry P., Ewing C.P., Schirm M., Lorenzo M., Kelly J., Pattarini D., Majam G., Thibault P., Logan S.: Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol. 60, 299–311 (2006)
- Harding C.M., Feldman M.F.: Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology, 29, 519–529 (2019)
- Harvey H., Bondy-Denomy J., Marquis H., Sztanko K.M., Davidson A.R., Burrows L.L.: Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation. Nat. Microbiol. 3, 47–52 (2018)
- Helenius A., Aebi M.: Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004)
- Hendrixson D.R., DiRita V.J.: Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52, 471–484 (2004)
- Hopf P.S., Ford R.S., Zebian N., Merkx-Jacques A., Vijayakumar S., Ratnayake D., Hayworth J., Creuzenet C.: Protein glycosylation in Helicobacter pylori: beyond the flagellins? PLoS One, 6, e25722 (2011)
- Howard S.L., Jagannathan A., Soo E.C., Hui J.P., Aubry A.J., Ahmed I., Karlyshev A., Kelly J.F., Jones M.A., Stevens M.P. i wsp.: Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect. Immun. 77, 2544–2556 (2009)
- Huttner A., Hatz C., van den Dobbelsteen G., Abbanat D., Hornacek A., Frolich R., Dreyer A.M., Martin P., Davies T., Fae K. i wsp.: Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. 17, 528–537 (2017)
- Ihssen J., Kowarik M., Dilettoso S., Tanner C., Wacker M., Thony-Meyer L.: Production of glycoprotein vaccines in Escherichia coli. Microb. Cell Fact. 9, 61 (2010)
- Iwashkiw J.A., Fentabil M.A., Faridmoayer A., Mills D.C., Peppler M., Czibener C., Ciocchini A.E., Comerci D.J., Ugalde J.E., Feldman M.F.: Exploiting the Campylobacter jejuni protein glycosylation system for glycoengineering vaccines and diagnostic tools directed against brucellosis. Microb. Cell Fact. 11, 13 (2012)
- Iwashkiw J.A., Seper A., Weber B.S., Scott N.E., Vinogradov E., Stratilo C., Reiz B., Cordwell S.J., Whittal R., Schild S. i wsp.: Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 8, e1002758 (2012)
- Jaffe S.R., Strutton B., Levarski Z., Pandhal J., Wright P.C.: Escherichia coli as a glycoprotein production host: recent developments and challenges. Curr. Opin. Biotechnol. 30, 205–210 (2014)
- Jennings M.P., Jen F.E., Roddam L.F., Apicella M.A., Edwards J.L.: Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells. Cell Microbiol. 13, 885–896 (2011)
- Jensen O.N.: Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 7, 391–403 (2006)
- Jervis A.J., Butler J.A., Lawson A.J., Langdon R., Wren B.W., Linton D.: Characterization of the structurally diverse N-linked glycans of Campylobacter species. J. Bacteriol. 194, 2355–2362 (2012)
- Jervis A.J., Wood A.G., Cain J.A., Butler J.A., Frost H., Lord E., Langdon R., Cordwell S.J., Wren B.W., Linton D.: Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system. Glycobiology, 28, 233–244 (2018)
- Kampf M.M., Braun M., Sirena D., Ihssen J., Thony-Meyer L., Ren Q.: In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Microb. Cell Fact. 14, 12 (2015)
- Karlyshev A.V., Everest P., Linton D., Cawthraw S., Newell D.G., Wren B.W.: The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology, 150, 1957–1964 (2004)
- Karlyshev A.V., Linton D., Gregson N.A., Wren B.W.: A novel paralogous gene family involved in phase-variable flagella--mediated motility in Campylobacter jejuni. Microbiology, 148, 473–480 (2002)
- Kelleher D.J., Karaoglu D., Mandon E.C., Gilmore R.: Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol. Cell. 12, 101–111 (2003)
- Kelly J., Jarrell H., Millar L., Tessier L., Fiori L.M., Lau P.C., Allan B., Szymanski C.M.: Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188, 2427–2434 (2006)
- Kowarik M., Numao S., Feldman M.F., Schulz B.L., Callewaert N., Kiermaier E., Catrein I., Aebi M.: N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science, 314, 1148–1150 (2006)
- Kowarik M., Young N.M., Numao S., Schulz B.L., Hug I., Callewaert N., Mills D.C., Watson D.C., Hernandez M., Kelly J.F. i wsp.: Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966 (2006)
- Ku S.C., Schulz B.L., Power P.M., Jennings M.P.: The pilin O-glycosylation pathway of pathogenic Neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductase. Biochem. Biophys. Res. Commun. 378, 84–89 (2009)
- Lalonde M.E., Durocher Y.: Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 251, 128–140 (2017)
- Larsen J.C., Szymanski C., Guerry P.: N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81–176. J. Bacteriol. 186, 6508–6514 (2004)
- Lertsethtakarn P., Ottemann K.M., Hendrixson D.R.: Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65, 389–410 (2011)
- Lesinski G.B., Westerink M.A.: Novel vaccine strategies to T-independent antigens. J. Microbiol. Methods. 47, 135–149 (2001)
- Lithgow K.V., Scott N.E., Iwashkiw J.A., Thomson E.L., Foster L.J., Feldman M.F., Dennis J.J.: A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol. Microbiol. 92, 116–137 (2014)
- Lizak C., Gerber S., Numao S., Aebi M., Locher K.P.: X-ray structure of a bacterial oligosaccharyltransferase. Nature, 474, 350–355 (2011)
- Logan S.M.: Flagellar glycosylation – a new component of the motility repertoire? Microbiology, 152, 1249–1262 (2006)
- Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B.: The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic. Acids Res. 42, D490–495 (2014)
- Lu Q., Li S., Shao F.: Sweet Talk: Protein Glycosylation in Bacterial Interaction With the Host. Trends Microbiol. 23, 630–641 (2015)
- Mahdavi J., Pirinccioglu N., Oldfield N.J., Carlsohn E., Stoof J., Aslam A., Self T., Cawthraw S.A., Petrovska L., Colborne N. i wsp.: A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol. 4, 130202 (2014)
- Makela P.H., Kayhty H., Leino T., Auranen K., Peltola H., Ekstrom N., Eskola J.: Long-term persistence of immunity after immunisation with Haemophilus influenzae type b conjugate vaccine. Vaccine, 22, 287–292 (2003)
- Mandlik A., Swierczynski A., Das A., Ton-That H.: Pili in Gram--positive bacteria: assembly, involvement in colonization and bioilm development. Trends Microbiol. 16, 33–40 (2008)
- McNally D.J., Hui J.P., Aubry A.J., Mui K., Guerry P., Brisson J.R., Logan S.M., Soo E.C.: Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81–176 using a focused metabolomics approach. J. Biol. Chem. 281, 18489–18498 (2006)
- Melli L.J., Ciocchini A.E., Caillava A.J., Vozza N., Chinen I., Rivas M., Feldman M.F., Ugalde J.E., Comerci D.J.: Serogroup--specific bacterial engineered glycoproteins as novel antigenic targets for diagnosis of shiga toxin-producing-Escherichia coli-associated hemolytic-uremic syndrome. J. Clin. Microbiol. 53, 528–538 (2015)
- Nagar R., Rao A.: An iterative glycosyltransferase EntS catalyzes transfer and extension of O- and S-linked monosaccharide in enterocin 96. Glycobiology, 27, 766–776 (2017)
- Nothaft H., Davis B., Lock Y.Y., Perez-Munoz M.E., Vinogradov E., Walter J., Coros C., Szymanski C.M.: Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine. Sci. Rep. 6, 26511 (2016)
- Nothaft H., Liu X., McNally D.J., Szymanski C.M.: N-linked protein glycosylation in a bacterial system. Methods Mol. Biol. 600, 227–243 (2010)
- Nothaft H., Scott N.E., Vinogradov E., Liu X., Hu R., Beadle B., Fodor C., Miller W.G., Li J., Cordwell S.J. i wsp.: Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol. Cell Proteomics. 11, 1203–1219 (2012)
- Nothaft H., Szymanski C.M.: Protein glycosylation in bacteria: sweeter than ever. Nat. Rev. Microbiol. 8, 765–778 (2010)
- Ollis A.A., Zhang S., Fisher A.C., DeLisa M.P.: Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat. Chem. Biol. 10, 816–822 (2014)
- Oman T.J., Boettcher J.M., Wang H., Okalibe X.N., van der Donk W.A.: Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat. Chem. Biol. 7, 78–80 (2011)
- Pappas G., Akritidis N., Bosilkovski M., Tsianos E.: Brucellosis. N. Engl. J. Med. 352, 2325–2336 (2005)
- Parkhill J., Wren B.W., Mungall K., Ketley J.M., Churcher C., Basham D., Chillingworth T., Davies R.M., Feltwell T., Holroyd S. i wsp.: The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 403, 665–668 (2000)
- Perez C., Kohler M., Janser D., Pardon E., Steyaert J., Zenobi R., Locher K.P.: Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody. Sci. Rep. 7, 46641 (2017)
- Pinho S.S., Reis C.A.: Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer. 15, 540–555 (2015)
- Power P.M., Seib K.L., Jennings M.P.: Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 347, 904–908 (2006)
- Ravenscroft N., Haeuptle M.A., Kowarik M., Fernandez F.S., Carranza P., Brunner A., Steffen M., Wetter M., Keller S., Ruch C. i wsp.: Purification and characterization of a Shigella conjugate vaccine, produced by glycoengineering Escherichia coli. Glycobiology, 26, 51–62 (2016)
- Riddle M.S., Kaminski R.W., Di Paolo C., Porter C.K., Gutierrez R.L., Clarkson K.A., Weerts H.E., Duplessis C., Castellano A., Alaimo C. i wsp. : Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella flexneri 2a administered to healthy adults: a single-blind, randomized phase I study. Clin. Vaccine Immunol. 23, 908–917 (2016)
- Salah Ud-Din A.I.M., Roujeinikova A.: Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: prospects for development of novel therapeutics. Cell. Mol. Life Sci. 75, 1163–1178 (2018)
- Schoenhofen I.C., Vinogradov E., Whitfield D.M., Brisson J.R., Logan S.M.: The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology, 19, 715–725 (2009)
- Schwarz F., Fan Y.Y., Schubert M., Aebi M.: Cytoplasmic N-glycosyltransferase of Actinobacillus pleuropneumoniae is an inverting enzyme and recognizes the NX(S/T) consensus sequence. J. Biol. Chem. 286, 35267–35274 (2011)
- Scott N.E., Nothaft H., Edwards A.V., Labbate M., Djordjevic S.P., Larsen M.R., Szymanski C.M., Cordwell))) S.J.: Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine. J. Biol. Chem. 287, 29384–29396 (2012)
- Shcherbakova A., Tiemann B., Buettner F.F., Bakker H.: Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proc. Natl. Acad. Sci. USA, 114, 2574–2579 (2017)
- Shen A., Kamp H.D., Grundling A., Higgins D.E.: A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev, 20, 3283–3295 (2006)
- Spiro R.G.: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12, 43R–56R (2002)
- Stephenson H.N., Mills D.C., Jones H., Milioris E., Copland A., Dorrell N., Wren B.W., Crocker P.R., Escors D., Bajaj-Elliott M.: Pseudaminic acid on Campylobacter jejuni flagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interaction. J. Infect. Dis. 210, 1487–1498 (2014)
- Szymanski C.M., Yao R., Ewing C.P., Trust T.J., Guerry P.: Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999)
- Terra V.S., Mills D.C., Yates L.E., Abouelhadid S., Cuccui J., Wren B.W.: Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J. Med. Microbiol. 61, 919–926 (2012)
- Thibault P., Logan S.M., Kelly J.F., Brisson J.R., Ewing C.P., Trust T.J., Guerry P.: Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34862–34870 (2001)
- Twine S.M., Paul C.J., Vinogradov E., McNally D.J., Brisson J.R., Mullen J.A., McMullin D.R., Jarrell H.C., Austin J.W., Kelly J.F. i wsp.: Flagellar glycosylation in Clostridium botulinum. FEBS J. 275, 4428–4444 (2008)
- Tytgat H.L., Lebeer S.: The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol. Mol. Biol. Rev. 78, 372–417 (2014)
- van Alphen L.B., Wuhrer M., Bleumink-Pluym N.M.C., Hensbergen P.J., Deelder A.M., van Putten J.P.M.: A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviour. Microbiology, 154, 3385–3397 (2008)
- van Sorge N.M., Bleumink N.M., van Vliet S.J., Saeland E., van der Pol W.L., van Kooyk Y., van Putten J.P.: N-glycosylated proteins and distinct lipooligosaccharide glycoforms of Campylobacter jejuni target the human C-type lectin receptor MGL. Cell Microbiol. 11, 1768–1781 (2009)
- Venugopal H., Edwards P.J., Schwalbe M., Claridge J.K., Libich D.S., Stepper J., Loo T., Patchett M.L., Norris G.E., Pascal S.M.: Structural, dynamic, and chemical characterization of a novel S-glycosylated bacteriocin. Biochemistry, 50, 2748–2755 (2011)
- Verma A., Arora S.K., Kuravi S.K., Ramphal R.: Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response. Infect. Immun. 73, 8237–8246 (2005)
- Vik A., Aas F.E., Anonsen J.H., Bilsborough S., Schneider A., Egge-Jacobsen W., Koomey M.: Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA, 106, 4447–4452 (2009)
- Wacker M., Feldman M.F., Callewaert N., Kowarik M., Clarke B.R., Pohl N.L., Hernandez M., Vines E.D., Valvano M.A., Whitfield C. i wsp.: Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc. Natl. Acad. Sci. USA, 103, 7088–7093 (2006)
- Wacker M., Linton D., Hitchen P.G., Nita-Lazar M., Haslam S.M., North S.J., Panico M., Morris H.R., Dell A., Wren B.W. i wsp.: N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science, 298, 1790–1793 (2002)
- Wacker M., Wang L., Kowarik M., Dowd M., Lipowsky G., Faridmoayer A., Shields K., Park S., Alaimo C., Kelley K.A. i wsp.: Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J. Infect. Dis., 209, 1551–1561 (2014)
- Yates L.E., Mills D.C., DeLisa M.P.: Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules. (w) Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. 2018, s. 1–34
- Young N.M., Brisson J.R., Kelly J., Watson D.C., Tessier L., Lanthier P.H., Jarrell H.C., Cadotte N., St Michael F., Aberg E. i wsp.: Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42530–42539 (2002)
- Yuan J., O’Donoghue P., Ambrogelly A., Gundllapalli S., Sherrer R.L., Palioura S., Simonovic M., Soll D.: Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett. 584, 342–349 (2010)
- Zabczynska M., Pochec E.: The role of protein glycosylation in immune system. Post. Biochem. 61, 129–137 (2015)