Have a personal or library account? Click to login
Protein Glycosylation In Bacterial Cells And Its Potential Applications Cover

Protein Glycosylation In Bacterial Cells And Its Potential Applications

Open Access
|Jun 2021

References

  1. Abouelhadid S., North S.J., Hitchen P., Vohra P., Chintoan--Uta C., Stevens M., Dell A., Cuccui J., Wren B.W.: Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial Pathogen. MBio, 10, (2019)
  2. Aebi M.: N-linked protein glycosylation in the ER. Biochim. Biophys. Acta, 1833, 2430–2437 (2013)
  3. Alaimo C., Catrein I., Morf L., Marolda C.L., Callewaert N., Valvano M.A., Feldman M.F., Aebi M.: Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J., 25, 967–976 (2006)
  4. Anonsen J.H., Vik A., Borud B., Viburiene R., Aas F.E., Kidd S.W., Aspholm M., Koomey M.: Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica. J. Bacteriol. 198, 256–267 (2016)
  5. Anonsen J.H., Vik A., Egge-Jacobsen W., Koomey M.: An extended spectrum of target proteins and modification sites in the general O-linked protein glycosylation system in Neisseria gonorrhoeae. J. Proteome Res. 11, 5781–5793 (2012)
  6. Arora S.K., Neely A.N., Blair B., Lory S., Ramphal R.: Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect. Immun. 73, 4395–4398 (2005)
  7. Baraldo K., Mori E., Bartoloni A., Norelli F., Grandi G., Rappuoli R., Finco O., Del Giudice G.: Combined conjugate vaccines: enhanced immunogenicity with the N19 polyepitope as a carrier protein. Infect. Immun. 73, 5835–5841 (2005)
  8. Barel M., Charbit A.: Role of Glycosylation/Deglycolysation Processes in Francisella tularensis Pathogenesis. Front. Cell Infect. Microbiol. 7, 71 (2017)
  9. Benz I., Schmidt M.A.: Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol. Microbiol. 40, 1403–1413 (2001)
  10. Bhat A.H., Maity S., Giri K., Ambatipudi K.: Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit. Rev. Microbiol. 45, 82–102 (2019)
  11. Borud B., Viburiene R., Hartley M.D., Paulsen B.S., Egge-Jacobsen W., Imperiali B., Koomey M.: Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation system. Proc. Natl. Acad. Sci. USA, 108, 9643–9648 (2011)
  12. Broker M., Dull P.M., Rappuoli R., Costantino P.: Chemistry of a new investigational quadrivalent meningococcal conjugate vaccine that is immunogenic at all ages. Vaccine, 27, 5574–5580 (2009)
  13. Cain J.A., Dale A.L., Niewold P., Klare W.P., Man L., White M.Y., Scott N.E., Cordwell S.J.: Proteomics Reveals Multiple Phenotypes Associated with N-linked Glycosylation in Campylobacter jejuni. Mol. Cell Proteomics. 18, 715–734 (2019)
  14. Cain J.A., Dale A.L., Sumer-Bayraktar Z., Solis N., Cordwell S.J.: Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. Mol. Omics. 16, 287–304 (2020)
  15. Chang I.J., He M., Lam C.T.: Congenital disorders of glycosylation. Ann. Transl. Med. 6, 477 (2018)
  16. Chludzinska A., Chrostek L., Cylwik B.: The alterations of proteins glycosylation in rheumatic diseases. Pol. Merkur. Lekarski, 33, 112–116 (2012)
  17. Chou W.K., Dick S., Wakarchuk W.W., Tanner M.E.: Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthase. J. Biol. Chem. 280, 35922–35928 (2005)
  18. Cook M.C., Kaldas S.J., Muradia G., Rosu-Myles M., Kunkel J.P.: Comparison of orthogonal chromatographic and lectin-affinity microarray methods for glycan profiling of a therapeutic monoclonal antibody. J. Chromatogr. B. Technol. Biomed. Life Sci. 997, 162–178 (2015)
  19. Corfield A.: Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem. Cell Biol. 147, 119–147 (2017)
  20. Cortina M.E., Balzano R.E., Rey Serantes D.A., Caillava A.J., Elena S., Ferreira A.C., Nicola A.M., Ugalde J.E., Comerci D.J., Ciocchini A.E.: A bacterial glycoengineered antigen for improved serodiagnosis of porcine brucellosis. J. Clin. Microbiol. 54, 1448–1455 (2016)
  21. Cuccui J., Thomas R.M., Moule M.G., D’Elia R.V., Laws T.R., Mills D.C., Williamson D., Atkins T.P., Prior J.L., Wren B.W.: Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open Biol. 3, 130002 (2013)
  22. Cullen T.W., O’Brien J.P., Hendrixson D.R., Giles D.K., Hobb R.I., Thompson S.A., Brodbelt J.S., Trent M.S.: EptC of Campylobacter jejuni mediates phenotypes involved in host interactions and virulence. Infect. Immun. 81, 430–440 (2013)
  23. Cummings R.D.: Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj. J. 36, 241–257 (2019)
  24. de Zoete M.R., Keestra A.M., Wagenaar J.A., van Putten J.P.: Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin. J. Biol. Chem. 285, 12149–12158 (2010)
  25. DiGiandomenico A., Matewish M.J., Bisaillon A., Stehle J.R., Lam J.S., Castric P.: Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity. Mol. Microbiol. 46, 519–530 (2002)
  26. Dubb R.K., Nothaft H., Beadle B., Richards M.R., Szymanski C.M.: N-glycosylation of the CmeABC multidrug efflux pump is needed for optimal function in Campylobacter jejuni. Glycobiology, 30, 105–119 (2020)
  27. Eichler J., Koomey M.: Sweet New Roles for Protein Glycosylation in Prokaryotes. Trends Microbiol. 25, 662–672 (2017)
  28. Elango D., Schulz B.L.: Phase-Variable Glycosylation in Nontypeable Haemophilus influenzae. J. Proteome Res. 19, 464–476 (2020)
  29. Ewing C.P., Andreishcheva E., Guerry P.: Functional characterization of flagellin glycosylation in Campylobacter jejuni 81–176. J. Bacteriol. 191, 7086–7093 (2009)
  30. Feldman M.F., Wacker M., Hernandez M., Hitchen P.G., Marolda C.L., Kowarik M., Morris H.R., Dell A., Valvano M.A., Aebi M.: Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. U S A, 102, 3016–3021 (2005)
  31. Freeze H.H.: Understanding human glycosylation disorders: biochemistry leads the charge. J. Biol. Chem. 288, 6936–6945 (2013)
  32. Gabius H.J., Roth J.: An introduction to the sugar code. Histochem. Cell Biol. 147, 111–117 (2017)
  33. Garcia-Quintanilla F., Iwashkiw J.A., Price N.L., Stratilo C., Feldman M.F.: Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front. Microbiol. 5, 381 (2014)
  34. Glover K.J., Weerapana E., Chen M.M., Imperiali B.: Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry, 45, 5343–5350 (2006)
  35. Godzik A.: Metagenomics and the protein universe. Curr. Opin. Struct. Biol. 21, 398–403 (2011)
  36. Goon S., Kelly J.F., Logan S.M., Ewing C.P., Guerry P.: Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 50, 659–671 (2003)
  37. Grass S., Lichti C.F., Townsend R.R., Gross J., St Geme J.W., 3rd: The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin. PLoS Pathog. 6, e1000919 (2010)
  38. Gross J., Grass S., Davis A.E., Gilmore-Erdmann P., Townsend R.R., St Geme J.W., 3rd: The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. J. Biol. Chem. 283, 26010–26015 (2008)
  39. Gudelj I., Lauc G., Pezer M.: Immunoglobulin G glycosylation in aging and diseases. Cell Immunol. 333, 65–79 (2018)
  40. Guerry P.: Campylobacter flagella: not just for motility. Trends Microbiol. 15, 456–461 (2007)
  41. Guerry P., Ewing C.P., Schirm M., Lorenzo M., Kelly J., Pattarini D., Majam G., Thibault P., Logan S.: Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol. 60, 299–311 (2006)
  42. Harding C.M., Feldman M.F.: Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology, 29, 519–529 (2019)
  43. Harvey H., Bondy-Denomy J., Marquis H., Sztanko K.M., Davidson A.R., Burrows L.L.: Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation. Nat. Microbiol. 3, 47–52 (2018)
  44. Helenius A., Aebi M.: Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004)
  45. Hendrixson D.R., DiRita V.J.: Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52, 471–484 (2004)
  46. Hopf P.S., Ford R.S., Zebian N., Merkx-Jacques A., Vijayakumar S., Ratnayake D., Hayworth J., Creuzenet C.: Protein glycosylation in Helicobacter pylori: beyond the flagellins? PLoS One, 6, e25722 (2011)
  47. Howard S.L., Jagannathan A., Soo E.C., Hui J.P., Aubry A.J., Ahmed I., Karlyshev A., Kelly J.F., Jones M.A., Stevens M.P. i wsp.: Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect. Immun. 77, 2544–2556 (2009)
  48. Huttner A., Hatz C., van den Dobbelsteen G., Abbanat D., Hornacek A., Frolich R., Dreyer A.M., Martin P., Davies T., Fae K. i wsp.: Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. 17, 528–537 (2017)
  49. Ihssen J., Kowarik M., Dilettoso S., Tanner C., Wacker M., Thony-Meyer L.: Production of glycoprotein vaccines in Escherichia coli. Microb. Cell Fact. 9, 61 (2010)
  50. Iwashkiw J.A., Fentabil M.A., Faridmoayer A., Mills D.C., Peppler M., Czibener C., Ciocchini A.E., Comerci D.J., Ugalde J.E., Feldman M.F.: Exploiting the Campylobacter jejuni protein glycosylation system for glycoengineering vaccines and diagnostic tools directed against brucellosis. Microb. Cell Fact. 11, 13 (2012)
  51. Iwashkiw J.A., Seper A., Weber B.S., Scott N.E., Vinogradov E., Stratilo C., Reiz B., Cordwell S.J., Whittal R., Schild S. i wsp.: Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 8, e1002758 (2012)
  52. Jaffe S.R., Strutton B., Levarski Z., Pandhal J., Wright P.C.: Escherichia coli as a glycoprotein production host: recent developments and challenges. Curr. Opin. Biotechnol. 30, 205–210 (2014)
  53. Jennings M.P., Jen F.E., Roddam L.F., Apicella M.A., Edwards J.L.: Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells. Cell Microbiol. 13, 885–896 (2011)
  54. Jensen O.N.: Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 7, 391–403 (2006)
  55. Jervis A.J., Butler J.A., Lawson A.J., Langdon R., Wren B.W., Linton D.: Characterization of the structurally diverse N-linked glycans of Campylobacter species. J. Bacteriol. 194, 2355–2362 (2012)
  56. Jervis A.J., Wood A.G., Cain J.A., Butler J.A., Frost H., Lord E., Langdon R., Cordwell S.J., Wren B.W., Linton D.: Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system. Glycobiology, 28, 233–244 (2018)
  57. Kampf M.M., Braun M., Sirena D., Ihssen J., Thony-Meyer L., Ren Q.: In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Microb. Cell Fact. 14, 12 (2015)
  58. Karlyshev A.V., Everest P., Linton D., Cawthraw S., Newell D.G., Wren B.W.: The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology, 150, 1957–1964 (2004)
  59. Karlyshev A.V., Linton D., Gregson N.A., Wren B.W.: A novel paralogous gene family involved in phase-variable flagella--mediated motility in Campylobacter jejuni. Microbiology, 148, 473–480 (2002)
  60. Kelleher D.J., Karaoglu D., Mandon E.C., Gilmore R.: Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol. Cell. 12, 101–111 (2003)
  61. Kelly J., Jarrell H., Millar L., Tessier L., Fiori L.M., Lau P.C., Allan B., Szymanski C.M.: Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188, 2427–2434 (2006)
  62. Kowarik M., Numao S., Feldman M.F., Schulz B.L., Callewaert N., Kiermaier E., Catrein I., Aebi M.: N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science, 314, 1148–1150 (2006)
  63. Kowarik M., Young N.M., Numao S., Schulz B.L., Hug I., Callewaert N., Mills D.C., Watson D.C., Hernandez M., Kelly J.F. i wsp.: Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966 (2006)
  64. Ku S.C., Schulz B.L., Power P.M., Jennings M.P.: The pilin O-glycosylation pathway of pathogenic Neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductase. Biochem. Biophys. Res. Commun. 378, 84–89 (2009)
  65. Lalonde M.E., Durocher Y.: Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 251, 128–140 (2017)
  66. Larsen J.C., Szymanski C., Guerry P.: N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81–176. J. Bacteriol. 186, 6508–6514 (2004)
  67. Lertsethtakarn P., Ottemann K.M., Hendrixson D.R.: Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65, 389–410 (2011)
  68. Lesinski G.B., Westerink M.A.: Novel vaccine strategies to T-independent antigens. J. Microbiol. Methods. 47, 135–149 (2001)
  69. Lithgow K.V., Scott N.E., Iwashkiw J.A., Thomson E.L., Foster L.J., Feldman M.F., Dennis J.J.: A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol. Microbiol. 92, 116–137 (2014)
  70. Lizak C., Gerber S., Numao S., Aebi M., Locher K.P.: X-ray structure of a bacterial oligosaccharyltransferase. Nature, 474, 350–355 (2011)
  71. Logan S.M.: Flagellar glycosylation – a new component of the motility repertoire? Microbiology, 152, 1249–1262 (2006)
  72. Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B.: The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic. Acids Res. 42, D490–495 (2014)
  73. Lu Q., Li S., Shao F.: Sweet Talk: Protein Glycosylation in Bacterial Interaction With the Host. Trends Microbiol. 23, 630–641 (2015)
  74. Mahdavi J., Pirinccioglu N., Oldfield N.J., Carlsohn E., Stoof J., Aslam A., Self T., Cawthraw S.A., Petrovska L., Colborne N. i wsp.: A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol. 4, 130202 (2014)
  75. Makela P.H., Kayhty H., Leino T., Auranen K., Peltola H., Ekstrom N., Eskola J.: Long-term persistence of immunity after immunisation with Haemophilus influenzae type b conjugate vaccine. Vaccine, 22, 287–292 (2003)
  76. Mandlik A., Swierczynski A., Das A., Ton-That H.: Pili in Gram--positive bacteria: assembly, involvement in colonization and bioilm development. Trends Microbiol. 16, 33–40 (2008)
  77. McNally D.J., Hui J.P., Aubry A.J., Mui K., Guerry P., Brisson J.R., Logan S.M., Soo E.C.: Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81–176 using a focused metabolomics approach. J. Biol. Chem. 281, 18489–18498 (2006)
  78. Melli L.J., Ciocchini A.E., Caillava A.J., Vozza N., Chinen I., Rivas M., Feldman M.F., Ugalde J.E., Comerci D.J.: Serogroup--specific bacterial engineered glycoproteins as novel antigenic targets for diagnosis of shiga toxin-producing-Escherichia coli-associated hemolytic-uremic syndrome. J. Clin. Microbiol. 53, 528–538 (2015)
  79. Nagar R., Rao A.: An iterative glycosyltransferase EntS catalyzes transfer and extension of O- and S-linked monosaccharide in enterocin 96. Glycobiology, 27, 766–776 (2017)
  80. Nothaft H., Davis B., Lock Y.Y., Perez-Munoz M.E., Vinogradov E., Walter J., Coros C., Szymanski C.M.: Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine. Sci. Rep. 6, 26511 (2016)
  81. Nothaft H., Liu X., McNally D.J., Szymanski C.M.: N-linked protein glycosylation in a bacterial system. Methods Mol. Biol. 600, 227–243 (2010)
  82. Nothaft H., Scott N.E., Vinogradov E., Liu X., Hu R., Beadle B., Fodor C., Miller W.G., Li J., Cordwell S.J. i wsp.: Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol. Cell Proteomics. 11, 1203–1219 (2012)
  83. Nothaft H., Szymanski C.M.: Protein glycosylation in bacteria: sweeter than ever. Nat. Rev. Microbiol. 8, 765–778 (2010)
  84. Ollis A.A., Zhang S., Fisher A.C., DeLisa M.P.: Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat. Chem. Biol. 10, 816–822 (2014)
  85. Oman T.J., Boettcher J.M., Wang H., Okalibe X.N., van der Donk W.A.: Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat. Chem. Biol. 7, 78–80 (2011)
  86. Pappas G., Akritidis N., Bosilkovski M., Tsianos E.: Brucellosis. N. Engl. J. Med. 352, 2325–2336 (2005)
  87. Parkhill J., Wren B.W., Mungall K., Ketley J.M., Churcher C., Basham D., Chillingworth T., Davies R.M., Feltwell T., Holroyd S. i wsp.: The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 403, 665–668 (2000)
  88. Perez C., Kohler M., Janser D., Pardon E., Steyaert J., Zenobi R., Locher K.P.: Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody. Sci. Rep. 7, 46641 (2017)
  89. Pinho S.S., Reis C.A.: Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer. 15, 540–555 (2015)
  90. Power P.M., Seib K.L., Jennings M.P.: Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 347, 904–908 (2006)
  91. Ravenscroft N., Haeuptle M.A., Kowarik M., Fernandez F.S., Carranza P., Brunner A., Steffen M., Wetter M., Keller S., Ruch C. i wsp.: Purification and characterization of a Shigella conjugate vaccine, produced by glycoengineering Escherichia coli. Glycobiology, 26, 51–62 (2016)
  92. Riddle M.S., Kaminski R.W., Di Paolo C., Porter C.K., Gutierrez R.L., Clarkson K.A., Weerts H.E., Duplessis C., Castellano A., Alaimo C. i wsp. : Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella flexneri 2a administered to healthy adults: a single-blind, randomized phase I study. Clin. Vaccine Immunol. 23, 908–917 (2016)
  93. Salah Ud-Din A.I.M., Roujeinikova A.: Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: prospects for development of novel therapeutics. Cell. Mol. Life Sci. 75, 1163–1178 (2018)
  94. Schoenhofen I.C., Vinogradov E., Whitfield D.M., Brisson J.R., Logan S.M.: The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology, 19, 715–725 (2009)
  95. Schwarz F., Fan Y.Y., Schubert M., Aebi M.: Cytoplasmic N-glycosyltransferase of Actinobacillus pleuropneumoniae is an inverting enzyme and recognizes the NX(S/T) consensus sequence. J. Biol. Chem. 286, 35267–35274 (2011)
  96. Scott N.E., Nothaft H., Edwards A.V., Labbate M., Djordjevic S.P., Larsen M.R., Szymanski C.M., Cordwell))) S.J.: Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine. J. Biol. Chem. 287, 29384–29396 (2012)
  97. Shcherbakova A., Tiemann B., Buettner F.F., Bakker H.: Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proc. Natl. Acad. Sci. USA, 114, 2574–2579 (2017)
  98. Shen A., Kamp H.D., Grundling A., Higgins D.E.: A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev, 20, 3283–3295 (2006)
  99. Spiro R.G.: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12, 43R–56R (2002)
  100. Stephenson H.N., Mills D.C., Jones H., Milioris E., Copland A., Dorrell N., Wren B.W., Crocker P.R., Escors D., Bajaj-Elliott M.: Pseudaminic acid on Campylobacter jejuni flagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interaction. J. Infect. Dis. 210, 1487–1498 (2014)
  101. Szymanski C.M., Yao R., Ewing C.P., Trust T.J., Guerry P.: Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999)
  102. Terra V.S., Mills D.C., Yates L.E., Abouelhadid S., Cuccui J., Wren B.W.: Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J. Med. Microbiol. 61, 919–926 (2012)
  103. Thibault P., Logan S.M., Kelly J.F., Brisson J.R., Ewing C.P., Trust T.J., Guerry P.: Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34862–34870 (2001)
  104. Twine S.M., Paul C.J., Vinogradov E., McNally D.J., Brisson J.R., Mullen J.A., McMullin D.R., Jarrell H.C., Austin J.W., Kelly J.F. i wsp.: Flagellar glycosylation in Clostridium botulinum. FEBS J. 275, 4428–4444 (2008)
  105. Tytgat H.L., Lebeer S.: The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol. Mol. Biol. Rev. 78, 372–417 (2014)
  106. van Alphen L.B., Wuhrer M., Bleumink-Pluym N.M.C., Hensbergen P.J., Deelder A.M., van Putten J.P.M.: A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviour. Microbiology, 154, 3385–3397 (2008)
  107. van Sorge N.M., Bleumink N.M., van Vliet S.J., Saeland E., van der Pol W.L., van Kooyk Y., van Putten J.P.: N-glycosylated proteins and distinct lipooligosaccharide glycoforms of Campylobacter jejuni target the human C-type lectin receptor MGL. Cell Microbiol. 11, 1768–1781 (2009)
  108. Venugopal H., Edwards P.J., Schwalbe M., Claridge J.K., Libich D.S., Stepper J., Loo T., Patchett M.L., Norris G.E., Pascal S.M.: Structural, dynamic, and chemical characterization of a novel S-glycosylated bacteriocin. Biochemistry, 50, 2748–2755 (2011)
  109. Verma A., Arora S.K., Kuravi S.K., Ramphal R.: Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response. Infect. Immun. 73, 8237–8246 (2005)
  110. Vik A., Aas F.E., Anonsen J.H., Bilsborough S., Schneider A., Egge-Jacobsen W., Koomey M.: Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA, 106, 4447–4452 (2009)
  111. Wacker M., Feldman M.F., Callewaert N., Kowarik M., Clarke B.R., Pohl N.L., Hernandez M., Vines E.D., Valvano M.A., Whitfield C. i wsp.: Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc. Natl. Acad. Sci. USA, 103, 7088–7093 (2006)
  112. Wacker M., Linton D., Hitchen P.G., Nita-Lazar M., Haslam S.M., North S.J., Panico M., Morris H.R., Dell A., Wren B.W. i wsp.: N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science, 298, 1790–1793 (2002)
  113. Wacker M., Wang L., Kowarik M., Dowd M., Lipowsky G., Faridmoayer A., Shields K., Park S., Alaimo C., Kelley K.A. i wsp.: Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J. Infect. Dis., 209, 1551–1561 (2014)
  114. Yates L.E., Mills D.C., DeLisa M.P.: Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules. (w) Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. 2018, s. 1–34
  115. Young N.M., Brisson J.R., Kelly J., Watson D.C., Tessier L., Lanthier P.H., Jarrell H.C., Cadotte N., St Michael F., Aberg E. i wsp.: Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42530–42539 (2002)
  116. Yuan J., O’Donoghue P., Ambrogelly A., Gundllapalli S., Sherrer R.L., Palioura S., Simonovic M., Soll D.: Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett. 584, 342–349 (2010)
  117. Zabczynska M., Pochec E.: The role of protein glycosylation in immune system. Post. Biochem. 61, 129–137 (2015)
DOI: https://doi.org/10.21307/PM-2021.60.2.11 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 137 - 149
Submitted on: Sep 1, 2020
Accepted on: Jan 1, 2021
Published on: Jun 25, 2021
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Agnieszka Wyszyńska, Rafał Jabłuszewski, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.