References
- Alegria A., Szczesny P., Mayo B., Bardowski J., Kowalczyk M.: Biodiversity in Oscypek, a traditional Polish cheese, determined by culture-dependent and independent approaches. Appl. Environ. Microbiol. 78, 1890–1898 (2012)
- Bokulich N.A., Collins T.S., Masarweh C., Allen G., Heymann H., Ebeler S.E.: Associations among wine grape microbiome, metabolome and fermentation behavior suggest microbial contribution to regional wine characteristics. mBio, 7, e00631–16 (2016)
- Bokulich N.A., Thorngate J.H., Richardson P.M., Mills D.A.: Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. 111, E139–48 (2014)
- Boreczek J., Litwinek D., Żylińska-Urban J., Izak D., Buksa K., Gawor J., Gromadka R., Bardowski J.K., Kowalczyk M.: Bacterial community dynamics in spontaneous sourdoughs made from wheat, splet and rye wholemeal flour. Microbiology Open, 9, e1009 (2020)
- Bridier A.: Exploring foodborne pathogen ecology and antimicrobial resistance in the light of shotgun metagenomics. Methods Mol. Biol. 1918, 229–245 (2019)
- Cao Y., Fanning S., Proos S., Jordan K., Srikumar S.: A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front. Microbiol. 8, 1829 (2017)
- Chakravorty S., Bhattacharya S., Chatzinotas A., et al.: Kombucha tea fermentation: Microbial and biochemical dynamics. Int. J. Food Microbiol. 220, 63–72 (2016)
- Cifuentesa A.: Food analysis and foodomics. J. Chromatogr A., 1216, 7109 (2009)
- Cocolin L., Alessandria V., Botta C., Gorra R., De Filippis., Ercolini D., Rantsiou K.: NaOH-debittering induces changes in bacterial ecology during table olives fermentation. Plos One, 8, e69074 (2013)
- Cook P., Nightingale K.K.: Use of omics methods for the advancement of food quality and food safety. Anim. Front. 8, 31–41 (2018)
- Coton M., Pawtowski A., Taminiau B., Burgaud G., Deniel F., Coulloumme-Labarthe L.: Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 93, fix048 (2017)
- De Filippis F., Genovese A., Ferranti P., Gilbert J.A., Ercolini D.: Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate”. Sci. Rep. 6, 21871 (2016)
- De Filippis F., La Storia A., Villani F., Ercolini D.: Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. Plos One, 8, e70222 (2013)
- De Filippis F., Parente E., Ercolini D.: Metagenomics insights into food fermentations. Microb. Biotechnol. 10, 91–102 (2017)
- De Filippis F., Parente E., Ercolini D.: Recent past, present, and future of the food microbiome. Annu. Rev. Food Sci. Technol. 9, 589–608 (2018)
- De Pasquale I., Di Cagno R., Buchin S., De Angelis M., Gobbetti M.: Spatial distribution of the metabolically active microbiota within Italian PDO ewes’ milk cheeses. Plos One, 11, e0153213 (2016)
- De Vuyst L., Harth H., Van Kerrebroeck S., Leroy F.: Microbiol ecology and process technology of sourdough fermentation. Adv. Appl. Food Microbiol. 37, 11–29 (2017)
- De Vuyst L., Harth H., Van Kerrebroeck S., Leroy F.: Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int. J. Food Microbiol. 239, 26–34 (2016)
- Du F., Zhang X., Gu H., Song J., Gao X.: Dynamic changes in the bacterial community during the fermentation of traditional Chinese fish Sauce (TCFS) and their correlation with TCFS quality. Microorganisms, 19, 371 (2019)
- Ercolini D.: High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79, 3148–3155 (2013)
- Escobar-Zepeda A., Sanches-Flores A., Quirasco Boruch M.: Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota. Food Microbiol. 57, 116–27 (2016)
- Fagerquist C.K., Zaragoza W.J., Sułtan O., Woo N., Quinones B., Cooley M.B., Mandrell R.E.: Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. Appl. Environ. Microbiol. 80, 2928–2940 (2014)
- Fei Y., Li L., Chen L., Zheng Y., Yu B.: High-throughput sequencing and culture-based approaches to analyze microbial diversity associated with chemical changes in naturally fermented tofu whey, a traditional Chinese tofu-coagulant. Food Microbiol. 76, 69–77 (2018)
- Ferrocino I., Greppi A., La Storia A., Rantsiou K., Ercolini D., Cocolin L.: Impact of nisin-activated packaging on microbiota of beef burgers during storage. Appl. Environ. Microbiol. 82, 549–559 (2016)
- Ferrocino L., Bellio A., Giordano M., Macori G., Romano A., Rantsiou K., Decastelli L., Cocolin L.: Shotgun metagenomics and volatilome profile of the microbiota of fermented sausages. Appl. Environ. Microbiol., 84, e02120–17 (2018)
- Forbes J.D., Knox N., Ronholm J., Pagotto F., Relmer A.: Metagenomics: The next culture-independent game changer. Front. Microbiol. 8, 1069 (2017)
- Fougy L., Desmonts M.H., Coeuret G., Fassel Ch., Hamon E., Hezard B., Champonier-Verges M.Ch., Chaillou S.: Reducing Salt in Raw Pork sausages increases spoilage and correlates with reduced bacterial diversity. Appl. Environ. Microbiol. 82, 3928–3939 (2016)
- Gilquin B., Jaquinod M., Louwagie M., Kieffer-Jaquinod S., Kraut A., Ferro M., Becher F., Brun V.: A proteomics assay to detect eight CBRN-relevant toxins in food, Proteomics, 17, 1–2 (2017)
- Gobbetti M., Minervini F., Pontonio E., Di Cango R., De Angelis M.: Drivers for the establishment and composition of the sourdough lactic acid bacteria biota. J. Food Microbiol. 239, 3–18 (2016)
- Greppi A., Ferrrocino I., La Storia A., Rantsiou K., Ercolini D., Cocolin L.: Monitoring of the microbiota of fermented sausages by culture independent rRNA-based approaches. Int. J. Food Microbiol. 212, 67–75 (2015)
- Hong X., Chen J., Liu L., Wu H., Tan H., Xie G., Xu Q., Zou H., Yu W., Wang L., Qin N.: Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese rice wine. Sci. Rep. 6, 26621 (2016)
- Huang Z.R., Honga J.L., Xua J.X., Lia L., Guoa W.L., Yang Y., Chenc S.J.: Exploring core functional microbiota responsible for the production of volatile flavour during the traditional brewing of Wuyi Hong Qu glutinous rice wine. Food Microbiol. 76, 487–496 (2018)
- Illeghems K., Weckx S., De Vuyst L.: Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample. Food Microbiol. 50, 54–63 (2015)
- Jadhav S., Sevior D., Bhave M., Palombo E.A.: Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF Mass Spectrometry. J. Proteomics. 97, 100–106 (2014)
- Jagadeesan B., Gerner-Smidt P., Allard M.W., Leuillet S., Winkler A., Xiao Y., Chaffron S.: The use of next generation sequencing for improving food safety: translation into practice. Food Microbiol. 79, 96–115 (2019)
- Jung J., Choi S., Jeon C.O., Park W.: Pyrosequencing-based analysis of the bacterial community in Korean traditional seafood, ojingeo jeotgal. J. Microbiol. Biotechnol. 23, 1428–1433 (2013)
- Jung W.Y., Jung J.Y., Lee H.J.: Functional characterization of bacterial communities responsible for fermentation of Doenjang: a traditional Korean fermented soybean paste. Front. Microbiol. 7, 827 (2016)
- Kable M.E., Srisengfa Y., laird M., Zaragoza J., Mcleod J., Heidenreich J.: The core and seasonal microbiota of raw bovine milk in tanker trucks and the impact of transfer to a milk processing facility. MBio, 7, 1–13 (2016)
- Kergourlay G., Taminiau B., Daube G., Vergès M.Ch.: Metagenomic insights into the dynamics of microbial communities in food. In. J. Food Microbiol. 231, 31–39 (2015)
- Kim J., Jung Y., Bong Y.S., Lee K.S., Hwang G.S.: Determination of the geographical origin of Kimchi by (1) H NRM based metabolite profiling. Biosci. Biotechnol. Biochem. 76, 1752–1757 (2012)
- Kim Y.S., Kim M.C., Kwon S.W., Kim S.J., Park I.C., Ka J.O., Weon H.Y.: Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J. Microbiol. 49, 340–348 (2011)
- Kumar J., Sharma N., Kaushal G., Samurailatpam S., Sahoo D., Rai A.K., Singh S.P.: Metagenomic insights into the taxonomic and functional features of Kinema, a traditional fermented soybean product of Sikkim Himalaya. Front. Microbiol. 10, 1744 (2019)
- Lee S.H., Jung J.Y., Jeon C.O.: Effects of temperature on microbial succession and metabolite change during saeu-jeot fermentation. Food Microbiol. 38, 16–25 (2014)
- Leff J.W., Fieser N.: Bacterial communities associated with the surfaces of fresh fruits and vegetables. Plos One, 8, e59310 (2013)
- Leonard S.R., Mammel M.K., Lacher D.W., Elkins Ch.A.: Application of metagenomic sequencing to food safety: detection of Shiga toxin-producing Escherichia coli on fresh bagged spinach. Appl. Environ. Microbiol. 81, 8183-8191 (2015)
- Lessard M.H., Viel C., Boyle B., St-Gelais D., Labrie S.: Metatranscriptome analysis of fungal straits Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese. BMC Genomics, 15, 235 (2014)
- Li Z., Feng C., Luo X., Yao H., Zhang D., Zhang T.: Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis. Food Microbiol. 76, 405–415 (2018)
- Liu D., Zhang P., Chen D., Howell K.: From the vineyard to the winery: how microbial Ecology drives regional distinctiveness of wine. Front. Microbiol. 10, 2679 (2019)
- Liu S., Chena Q., Zoub H., Yud Y., Zhou Z., Maoa J., Zhange S.: A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes. Int. J. Food Microbiol. 303, 9–18 (2019)
- Liu S.P., Yu J.X., Wei X.L., Ji Z.W., Zhou Z.L.: Sequencing-based screening of functional microorganism to decrease the formation of biogenic amines in Chinese rice wine. Food Control. 64, 98–104 (2016)
- Liu T., Li Y., Yang Y., Yi H., Znang L.: The influence of different lactic acid bacteria on sourdough flavor and a deep insight into sourdough fermentation through RNA sequencing. Food Chem. 307, 125529 (2020)
- Lo Y.T, Shaw P.Ch.: DNA-based techniques for authentication of processed food and food supplements. Food Chem. 240, 767–774 (2017)
- Looft T., Jahnson T.A., Allen H.K., Bayles D.O., Alt D.P., Stedtfeld R.D.: Infeed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA, 109, 1691–1696 (2012)
- Lopez-Velasco G., Welbaum G.E., Boyer R.R., Mane S.P., Ponder M.A.: Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J. Appl. Microbiol. 110, 1203–1214 (2011)
- Marino M., Innocente N., Maifreni M., Mounier J., Cobo-Diaz J.F., coton E.: Diversity within Italian chesse making brine-associated bacterial communities evidenced by massive parallel 16S rRNA gene tag sequencing. Front Microbiol. 8, 2119 (2017)
- Marsh A., O’Sullivan O., Hill C., Cotter P.D.: Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 38, 171–178 (2014)
- Maury M., Tsai Y.H., Chalier C., Touchon M., Chenal-Francisque V.: Uncovering Listeria Monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 48, 308–313 (2016)
- Minervini F., Celano G., Lattanzi A., De Angelis M., Gobbetti M.: Added ingredients affect the microbiota and biochemical characteristics of durum wheat type-I sourdough. Food Microbiol. 60, 112–123 (2016)
- Monnet C., Dugat-Bony E., Swennen D., Beckerich J.M., Irlinger F.: Investigation of the activity of the microorganisms in a Reblochon-style cheese by metatranscriptomic analysis. Front. Microbiol. 7, 536 (2016)
- Morgan H.H., du Toit M., Setati M.E. The grapevine and wine microbiome: insights from high-throughput amplicon sequencing. Front Microbiol. 11, 8–820 (2017)
- Nam Y.D., Lee S.Y., Lim S.I.: Microbial community analysis of Korean soybean pastes by next generation sequencing. Int. J. Food Microbiol. 155, 36–42 (2012)
- Nam Y.D., Park S.I., Lim S.I.: Microbial composition of the Korean traditional food “kochujang” analyzed by a massive sequencing technique. J. Food Sci. 77, 250–256 (2012)
- Nam Y.D., Yi S-H., Lim S.I.: Bacterial diversity of Cheonggukjang a traditional Korean fermented food analyzed by barcoded pyrosequencing. Food Control, 28, 135–142 (2012)
- Noyes N.R., Yang X., Linke L.M., Magnuson R.J., Dettenwanger A., Cook S., Geornaras I.: Resistome diversity in cattle and the environment decreases during beef production. ELife, 5, e13195 (2016)
- Ottesen A., Ramachandran P., Reed E., White J.R., Hasan N., Subramanian P., et al.: Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak. BMC Microbiol. 16, 275 (2016)
- Pinto C., Pinho D., Sousa S., Pinheiro M., Egas C., Gomes A.C.: Unravelling the diversity of grapevine microbiome. PLoS One, 9, e85622 (2014)
- Pisano M.B., Scano P., Murgia A., Cosentino S., Caboni P.: Metabolomics and microbiological profile of Italian mozzarella cheese produced with buffalo and cow milk. Food Chem. 192, 618–624 (2016)
- Pitta D.W., Dou Z., Kumar S., Indugu N., Toth J.D., Vecchiarelli B.: Metagenomic evidence of the prevalence and distribution patterns of antimicrobial resistance genes in dairy agroecosystems. Foodborne Pathog. Dis. 13, 296–302 (2016)
- Połka J., Rebecchi A., Pisacane V., Morelli L., Puglisi E.: Bacterial diversity in typical Italian salami at different ripening stages as revealed by high-throughput sequencing of 16S rRNA amplicons. Food Microbiol. 46, 342–356 (2015)
- Portillo M.D.C., Franquès J., Araque I., Reguant C., Bordons A.: Bacterial diversity of grenache and carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 219, 56–63 (2016)
- Quigley L., O’Dullivan D.J., Daly D., O’Sullivan O., Burdikova Z., Vana R., Beresford T.P., Ross R.P., Fitzgerald G.F., McSweeney P.L.: Thermus and the pink discoloration defect in cheese. mSystems, 1, e00023–16 (2016)
- Quigley L., O’Sullivan O., Stanton C., Beresford T.P., Ross R.P., Fitzgerald G.F.: The complex microbiota of raw milk. FEMS Microbiol. Rev. 37, 664–698 (2013)
- Rantsiou K., Cocolin L.: New developments in the study of the microbiota of naturally fermented sausage as determined by molecular methods: a review. Int. J. Food Microbiol. 108, 255–267 (2006)
- Rešetar D., Marchetti-Deschmann M., Allmaier G., Katalinić J.P., Pavelić S.K.: Matrix assisted laser desorption ionization mass spectrometry linear time-of-flight method for white wine fingerprinting and classification. Food Control, 64, 157–164 (2016)
- Rhoads A., Au K.F.: PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 13, 278–289 (2015)
- Rodrigues M.X., Lima S.F., Canniatti-Brazaca S.G., Bicalho R.C.: The microbiome of bulk tank milk: characterization and associations with somatic cell count and bacterial count. J. Dairy Sci. 100, 2536–2552 (2017)
- Setati M.E., Jacobson D., Andong U.C., Bauer F.F.: The vineyard yeast microbiome, a mixed model microbial map. PLoS One, 7, e52609 (2012)
- Shen Y., Nie J., Kuang L., Zhang J., Li H.: DNA Sequencing, genomes and genetic markers of microbes on fruits and vegetables. Microb. Biotechnol. 0, 1–40 (2020)
- Shing P., Karimi A., Devendra K., Waldroup P.W., Cho K.K., Kwon Y.M.: Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poult. Sci. 92, 272–276 (2013)
- Singh T.A., Devi K.R., Ahmed G., Jeyaram K.: Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of Northeast India. Food Res. Intern. 55, 356–362 (2014)
- Smid E., Lacroix C.: Microbe-microbe interactions in mixed culture food fermentation. Curr. Opin. Biotechnol. 25, 148–154 (2013)
- Stefanini I., Cavalieri D.: Metagenomic approaches to investigate the contribution of the vineyard environment to the quality of wine fermentation: potentials and difficulties. Front. Microbiol. 9, 991 (2018)
- Stellato G., De Filippis F., La Storia A., Ercolini D.: Coexistence of lactic acid bacteria and potential spoilage microbiota in a dairy processing environment. Appl. Environ. Microbiol. 81, 7893–7904 (2015)
- Sulaiman J., Gan H.M., Yin W.F., Chan K.G.: Microbiol succession and the functional potential during the fermentation of Chinese soy sauce brine. Front. Microbiol. 5, 556 (2014)
- Tan G., Hu M., Pan Z., Li M., Li L., Yang M.: High-throughput sequencing and metabolomics reveal differences in bacterial diversity and metabolites between red and white Sufu. Front. Microbiol. 11, 758 (2020)
- Taylor M.W., Tsai P., Anfang N., Ross H.A., Goddard M.R.: Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environ. Microbiol. 16, 2848–2858 (2014)
- Van Kerrebrock S., Maes D., De Vuyst L.: Sourdoughs as a function of their species diversity and process conditions, a meta-analysis. Trends Food Sci. Technol. 68, 152–159 (2017)
- Walsh A.M., Crispie F., Daari K., O’Sullivan O., Martin J.C., Arthur C.T., Claesson M.J., Scott K.P., Cotter P.D.: Strain-level metagenomic analysis of the fermented dairy beverage nunu highlights potential food safety risks. Appl. Environ. Microbiol. 83, e01144–17 (2017)
- Wolfe B.E., Button J.E., Santarelli M., Dutton R.: Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell, 158, 422–433 (2014)
- Xu Y.J.: Foodomics: a novel approach for food microbiology. TrAC., 96, 14–21 (2017)
- Yang Y., Noyes N.R., Doster E., Martin J.N.: Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl. Environ. Microbiol. 82, 2433–2443 (2016)
- Zarraonaindia I., Owens S.M., Weisenhorn P., West K., Hampton-Marcell J., Lax S., Bokulich N.A.: The soil microbiome influences grapevine-associated microbiota. MBio. 6, e02527–14 (2015)
- Zhang G., Zhang W., Sadiq F.A., Arbab S.K., Guoqing He G.: Microbiota succession and metabolite changes during the traditional sourdough fermentation of Chinese steamed bread. CyTA – Journal of Food, 17, 172–179 (2019)
- Zhang J., Plowmar J.E., Tiam B., Clerens S., On S.L.W.: An improved method for MALDI-TOF analysis of wine-associated yeasts. J. Microbiol. Meth. 172, 105904 (2020)
- Zhao M., Su X.Q, Nian B., Chen L.J., Zhang D.L., Duan S.M., Ma Y.: Integrated meta-omics approaches to understand the microbiome of spontaneous fermentation of traditional Chinese Pu-erh tea. Msysystems, 4, e00680 (2019)
- Zheng X., Liu F., Shi X., Wang B., Li K., Li B.: Dynamic correlations between microbiota succession and flavor development involved in the ripening of Kazak artisanal cheese. Food Res. Intern. 105, 733–742 (2018)
- Zhou B., Ma C., Ren X.Y., Xia T., Zheng Ch., Liu X.: Correlation analysis between filamentous fungi and chemical compositions in a Pu-erh type tea after a long-term storage. Food. Sci. Nutr. 8, 2501–2511 (2020)
- Zhou B., Ma C., Ren X., Xia T., Li X., Wu Y.: Production of theophylline via aerobic fermentation of Pu-erh tea using tea-derived fungi. BMC Microbiol. 19, 261 (2019)
- Zhu M., Li N., Zhou F., Ouyang J., Lu D., Xu W., Li J., Lin H., Zhang Z., Xiao J., Wang K., Huang J., Liu Z., Wu J.: Microbial bioconversion of the chemical components in dark tea. Food Chem. 312, 126043 (2020)
- Zhu Y.C., Luo Y.H., Wang P.P., Zhao MY., Li L., Hu XS., Chen F.: Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation. Food. Chem. 194, 643–649 (2016)