Have a personal or library account? Click to login
ANTIMICROBIAL ACTIVITY OF LIPOPEPTIDES Cover
Open Access
|Feb 2022

References

  1. Avrahami D., Shai Y.: A new group of antifungal and antimicrobial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J. Biol. Chem. 279, 12277–12285 (2004)
  2. Avrahami D., Shai Y.: Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acidcontaining antimicrobial peptides: A plausible mode of action. Biochemistry-US, 42, 14946–14956 (2003)10.1021/bi035142v14674771
  3. Avrahami D., Shai Y.: Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly and cell selectivity. Biochemistry-US, 41, 2254–2263 (2002)10.1021/bi011549t11841217
  4. Azmi F, Elliot A.G., Marasini N., Ramu S., Ziora Z., Kavanagh A.M., Blaskovich M.A.T., Cooper M.A., Skwarczynski M., Toth I.: Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation. Bioorgan. Med. Chem. 24, 2235–2241 (2016)
  5. Bahar A.A., Ren D.: Antimicrobial Peptides. Pharmaceuticals, 6, 1543–1575 (2013)10.3390/ph6121543387367624287494
  6. Bai Y., Liu S.P., Jiang P., Zhou L., Li J., Tang C., Verma C., Mu Y.G., Beuerman R.W., Pervushin K.: Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin. Biochemistry-US, 48, 7229–7239 (2009)10.1021/bi900670d19580334
  7. Bai Y., Liu S.P., Li J.G., Lakshminarayan R., Sarawathi P., Tang C., Ho D.C., Verma C., Beuerman R.W., Pervushin K.: Progressive Structuring of a Branched Antimicrobial Peptide on the Path to the Inner Membrane Target. J. Biol. Chem. 287, 26606–26617 (2012)
  8. Barańska-Rybak W., Pikuła M., Dawgul M., Kamysz W., Trzonkowski P., Roszkiewicz J.: Safety profile of antimicrobial peptides: Camel, Citropin, Protegrin, Temporin A and lipopetide on HaCaT keratinocytes. Acta. Pol. Pharm. 70, 795–801 (2013)
  9. Barchiesi F., Giacometti A., Cirioni O., Arzeni D., Silvestri C., Kamysz W., Abbruzzetti A., Riva A., Kamysz E., Scalise G.: In vitro activity of the synthetic lipopeptide PAL-Lys-Lys-NH(2) alone and in combination with antifungal agents against clinical isolates of Cryptococcus neoformans. Peptides, 28, 1509–1513 (2007)10.1016/j.peptides.2007.07.01017698253
  10. Bhunia A., Mohanram H., Domadia P.N., Torres J., Bhattacharjya S.: Designed beta-Boomerang Antiendotoxic and Antimicrobial peptides. Structures and activities in lipopolysaccharide, J. Biol. Chem. 284, 21991–22004 (2009)
  11. Błażewicz I., Jaśkiewicz M., Piechowicz L., Kamysz W., Nowicki R., Barańska-Rybak W.: Rola peptydów przeciwdrobnoustrojowych w wybranych dermatozach. Przegl. Dermatol. 103, 227–232 (2016)
  12. Catiau L., Traisnel J., Delval-Dubois V., Chihib N.E., Guillochon D., Nedjar-Arroume N.: Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides, 32, 633–638 (2011)10.1016/j.peptides.2010.12.01621262306
  13. Cirioni O., Scalise G. i wsp.: The lipopeptides Pal-Lys-Lys-NH(2) and Pal-Lys-Lys soaking alone and in combination with intraperitoneal vancomycin prevent vascular graft biofilm in a subcutaneous rat pouch model of staphylococcal infection. Peptides, 28, 1299–1303 (2007)10.1016/j.peptides.2007.03.01717537542
  14. Citterio L., Franzyk H., Palarasah Y., Andersen T.E., Mateiu R.V., Gram L.: Improved in vitro evaluation of novel antimicrobials: potential synergy between human plasma and antibacterial peptidomimetics, AMPs and antibiotics against human pathogenic bacteria, Res. Microbiol. 167, 72–82 (2016)10.1016/j.resmic.2015.10.00226499211
  15. Cochrane A.S, Findlay B., Bakhtiary A., Acedo J.Z., Rodriguez-Lopez E.M, Mercier P., Vederas J.C.: Antimicrobial lipopeptide tridecaptin A1 selectivelybinds to Gram-negative lipid II. P. Natl. Acad. Sci. USA, 113, 11561–11566 (2016)10.1073/pnas.1608623113506828927688760
  16. Dawgul M., Barańska-Rybak W., Greber K., Guzik Ł., Nowicki R., Łukasiak J., Kamysz W.: Aktywność przeciwbakteryjna krótkich lipopeptydów wobec klinicznych szczepów Staphylococcus aureus. Alergia Astma Immunologia, 16, 31–36 (2001)
  17. Dawgul M., Barańska-Rybak W., Bielińska S., Nowicki R., Kamysz W.: Wpływ peptydów przeciwdrobnoustrojowych na biofilm Candida. Alergia Astma Immunologia, 15, 220–225 (2010)
  18. Dawgul M., Maciejewska M., Jaskiewicz M., Karafova A., Kamysz W.: Antimicrobial peptides as potential tool to fight bacterial biofilm, Acta. Pol. Pharm. 71, 39–47 (2014)
  19. Eckhard L.H., Houri-Haddad Y., Sol A., Zeharia R., Shai Y., Beyth S., Domb A.J., Bachrach G., Beyth N.: Sustained release of Antibacterial Lipopeptides from Biodegradable Polymers against Pral Pathogens, Plos One, 11, e0162537 (2016)10.1371/journal.pone.0162537501583527606830
  20. Fenyou She, Nimmagadda A., Teng P., Su M., Zuo X.B., Cai J.F.: Helical 1:1 alpha/Sulfono-gamma-AA Heterogeneous Peptides with Antimicrobial Activity, Biomacromolecules, 17, 1854–1859 (2016)
  21. Ghosh C., Konai M.M., Sarkar P., Samaddar S., Haldar J.: Design simple lapidates lysines: bifurcation imparts selective antimibrobial activity. Chem. Med. Chem., 11, 2367–2371 (2016)
  22. Giuliani A., Rinaldi A.C.: Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci. 68, 2255–2266 (2011)10.1007/s00018-011-0717-321598022
  23. Goldberg K. Sarig H., Zakoon F., Espand R.F., Espand R.M., Mor A.: Sensitization of Gram-negative bacteria by targeting the membrane potential. Faseb J. 27, 3818–3826 (2013)
  24. Greber K.E., Dawgul M., Kamysz W., Sawicki W.: Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides. Front. Microbiol. Doi: 10.3389/fmicb.2017.00123 (2017)10.3389/fmicb.2017.00123528535428203232
  25. Greber K.E., Ciura K., Belka M., Kawczak P., Nowakowska J., Baczek T., Sawicki W.: Characterization of antimicrobial and hemolytic properties of short synthetic cationic lipopeptides based on QSAR/QSTR approach, Amino acids, DOI: 10.1007/s00726-017-2530-2 (2017)10.1007/s00726-017-2530-2585217229264738
  26. Horn J.N., Sengillo J.D., Lin D.J., Romo T.D., Grossfield A.: Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics, BBA.-Biomembranes. 1818, 212–218 (2012)10.1016/j.bbamem.2011.07.025369433821819964
  27. Hu Y.G., Amin M.N., Padhee S., Wang R.S.E., Qiao Q., Bai G., Li Y.Q., Mathew A., Cao C.H., Cai J.F.: Lipidated peptidomimetics with improved antimicrobial activity. ACS. Med. Chem. Lett.3, 683–686 (2012)10.1021/ml3001215402573724900530
  28. Hu Y.G., Li X.L., Sebti S.M., Chen J.D., Cai J.F.: Design and synthesis of AApeptides: a new class of peptide mimics. Bioorg. Med. Chem. Lett. 21, 1469–1471 (2011)
  29. Iyer V.: A review of stapled peptides and small molecules to inhibit protein-protein interactions in cancer. Curr. Med. Chem. 23, 3025–3043 (2016)
  30. The APD: The Antimicrobial Peptide Database, http://aps.unmc. edu/AP/main.php (24.02.2018)
  31. Jammal J., Zakoon F., Kaneti G., Goldberg K., Mor A.: Sentsitization of Gram-negative bacteria to rifampin and OAK combinations. Sci. Rep.-UK, DOI: 10.1038/srep0921610.1038/srep09216436386025782773
  32. Jammal J., Zaknoon F., Kaneti G., Herhkovits A.S., Mor A.: Sensitization of Gram-negative Bacilli to Host Antimicrobial Proteins, JPN. J. Infect. Dis. 215, 1599–1607 (2017)
  33. Janiszewska J. Naturalne peptydy przeciwdrobnoustrojowe w zastosowaniach biomedycznych. Polimery, 59, 699–707 (2014)10.14314/polimery.2014.699
  34. Janiszewska J., Sowinska M., Rajnisz A., Solecka J., Lacka I., Milewski S., Urbanczyk-Lipkowska Z.: Novel dendrimeric lipopeptides with antifungal activity, Bioorg. Med. Chem. Lett. 22, 1388–1393 (2012)
  35. Jansen R.O., Sandberg-Schaal A., Frimodt-Moller N., Nielsen H.M., Franzyk H.: End group modification: Efficient tool for improving activity of antimicrobial peptide analogues towards Gram-positive bacteria, Eur. J. Pharm. Biopharm. 95, 40–46 (2015)10.1016/j.ejpb.2015.01.01325622790
  36. Jaśkiewicz M., Neubauer D., Kamysz W.: Comparative Study on Antistaphylococcal Activity of Lipopeptides in Various Culture Media. Antibiotics, DOI:10.3390/antibiotics6030015 (2017)10.3390/antibiotics6030015561797928767074
  37. Jenner Z.B., Crittenden C.M., Gonzales M., Brodbelt J.S., Bruns K.A.: Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity, Biopolymers, 108, e23006 (2017)10.1002/bip.2300628073163
  38. Jerala R.: Synthetic lipopeptides: a novel class of anti-infectives, Expert. Opin. Inv. Drug. 16, 1159–1169 (2007)
  39. Kamysz E., Barchiesi F. i wsp.: In vitro activity of the lipopeptide PAL-Lys-Lys-NH2, alone and in combination with antifungal agents, against clinical isolates of Candida spp. Peptides, 32, 99–103 (2011)10.1016/j.peptides.2010.10.022
  40. Kamysz E., Sikorska E., Dawgul M., Tyszkowski R., Kamysz W.: Influence of dimerization of lipopeptide Laur-Orn-Orn-Cys-NH2 and N-terminal peptide of human lactoferricin on biological activity. Int. J. Pept. Res. Ther. 21, 39–46 (2015)10.1007/s10989-014-9423-y
  41. Kamysz W.: Projektowanie, synteza i badania peptydów przeciwdrobnoustrojowych. Akademia Medyczna. Gdańsk, 2007
  42. Kaur P., Li Y.Q., Cai F.J., Song L.K.: Selective membrane disruption mechanism of an antibacterial gamma-AApeptide defined by EPR spectroscopy. Biophys. J. 110, 1789–1799 (2016)
  43. Koh J.J., Lin S.M., Beuerman R.W., Liu S.P.: Recent advances in synthetic lipopeptides as anti-microbial agents: design and synthetic approaches, Amino acids, 49, 1653–1677 (2017)
  44. Kozińska A., Sitkiewicz I.:. "Nowe” i "Stare” antybiotyki – mechanizmy działania i strategie poszukiwania leków przeciwbakteryjnych. Kosmos, 66, 109–124 (2017)
  45. Lakshminarayanan R., Beuerman R.W. I wsp.: Branched peptide, B2088, disrupts the supramolecular organization of lipopolysaccharides and sensitizes the Gram-negative bacteria, Sci. Rep.-UK, 6, DOI: 10.1038/srep25905 (2016)10.1038/srep25905
  46. Laverty G., McLaughlin M., Shaw C., Gorman S.P., Gilmore B.F.: Antimicrobial Activity of Short, Synthetic Cationic Lipopeptides, Chem. Biol. Drug. Des. 75, 563–569 (2010)
  47. Li J., Koh J.J, Liu S., Lakshminarayanan R., Verma C.S, Beuerman R.W.: Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front. Neurosci. Doi: 10.3389/fnins.2017.00073 (2017)10.3389/fnins.2017.00073
  48. Li J.G., Liu S.P., Lakshminarayanan R., Bai Y., Pervushin K., Verma C., Beuerman R.W.: Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability, BBA. – Biomembranes, 1828, 1112–1121 (2013)10.1016/j.bbamem.2012.12.015
  49. Lin D.J., Grossfield A.: Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity. Biophys. J. 107, 1862–1872 (2014)
  50. Lohan S., Cameotra S.S., Bisht G.S.: Systematic study of non-natural short cationic lipopeptides as novel broad-spectrum antimicrobial agents. Chem. Biol. Drug. Des. 82, 557–566 (2013)
  51. Majerle A., Kidric J. Jerala R.: Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain. J. Antimicrob. Chemoth. 51, 1159–1165 (2003)
  52. Mak P., Pohl J., Dubin A., Reed M.S., Bowers S.E., Fallon M.T., Shafer W.M.: The increased bactericidal activity of a fatty acid-modified synthetic antimicrobial peptide of human cathepsin G correlates with its enhanced capacity to interact with model membranes. Int. J. Antimicrob. Ag. 21, 13–19 (2003)10.1016/S0924-8579(02)00245-5
  53. Makovitzky A., Avrahami D., Shai Y.: Ultrashort antibacterial and antifungal lipopeptides. P. Natl. Acad. Sci. USA, 103, 15997–16002 (2006)10.1073/pnas.0606129103163511617038500
  54. Makovitzky A., Baram J. Shai Y.: Antimicrobial lipopolypeptides composed of palmitoyl di- and tricationic peptides: in vitro and in vivo activities, self-assembly to nanostructures and plausible mode of action. Biochemistry-US, 47, 10630–10636 (2008)10.1021/bi801167518783248
  55. Malina A., Shai Y.: Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of cationic biologically inactive peptide, Biochem. J. 390, 695–702 (2005)
  56. Mangoni M.L., Shai Y.: Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action, Cell Mol. Life Sci. 68, 2267–2280 (2011)10.1007/s00018-011-0718-221573781
  57. Migon D., Neubauer D., Kamysz W.: Hydrocarbon Stapled Antimicrobial Peptides. Protein J. DOI: 10.1007/s10930-018-9755-0 (2018)10.1007/s10930-018-9755-0584227329330644
  58. Min K.R., Galvis A., Williams B., Rayala R., Cudic P., Ajdic D.: Antibacterial and Antibiofilm Activities of a Novel Synthetic Cyclic Lipopeptide against Cariogenic Streptococcus mutans UA159. Antimicrob. Agents. Chemother. DOI: 10.1128/AAC.00776-17 (2017)10.1128/AAC.00776-17552765528533236
  59. Mirski T., Gryko R., Bartoszcze M., Bielwaska-Drózd A., Tyszkiewicz W.: Peptydy przeciwdrobnoustrojowe – nowe możliwości zwalczania infekcji u ludzi i zwierząt. Medycyna Wet. 67, 517–521 (2011)
  60. Mishra B., Lushnikova T., Wang G.S.: Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC. Adv. 5, 59758–59769 (2015)
  61. Mizerska-Dudka M., Andrejko M., Kondefer-Szerszeń M.. Przeciwirusowe peptydy kationowe człowieka i owadów. Post. Mikrobiol. 50, 209–216 (2011)
  62. Mohanram H., Bhattacharjya S.: ‘Lollipop’-shaped helical structure of a hybrid antimicrobial peptide of temporin B – lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity, BBA. – Gen. Subjects. 1860, 1362–1372 (2016)10.1016/j.bbagen.2016.03.02527015761
  63. Mohanram H., Bhattacharjya S.: beta-Boomerang Antimicrobial and antiendotoxic peptides: lipidation and disulfide bond effects on activity and structure. Pharmaceuticals (Basel, Switzerland),7, 482–501 (2014)10.3390/ph7040482401470424756162
  64. Nasompag S., Dechsiri P., Hongsing N., Phonimdaeng P., Daduang S., Klaynongsruang S., Camesano T.A., Patramanon R.: Effect of acyl chain length on therapeutic activity and mode of action of the C-X-KYR-NH2 antimicrobial lipopeptide. BBA. – Biomembranes, 1848, 2351–2364 (2015)10.1016/j.bbamem.2015.07.00426170198
  65. Nedjar-Arroume N., Dubois-Delval V., Adje E.Y., Traisnel J., Krier F., Mary P., Kouach M., Briand G., Guillochon D.: Bovine hemoglobin: an attractive source of antibacterial peptides. Peptides, 29, 969–977 (2008)10.1016/j.peptides.2008.01.01118342399
  66. Niu Y.H., Cai J.F I wsp.: Lipo-gamma-AApeptides as a new class of potent and broad-spectrum antimicrobial agents. J. Med. Chem. 55, 4003–4009 (2012)
  67. Omardien S., Brul S., Zaat S.A.J.: Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Front. Cell. Dev. Biol. Doi: 10.3389/fcell.2016.00111 (2016)10.3389/fcell.2016.00111506385727790614
  68. Oren Z., Lerman J.C., Gudmundsson G.H., Agerberth B., Shai Y.: Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem. J. 341, 501–513 (1999)10.1042/bj3410501
  69. Padhee S., Li Y.Q., Cai J.F.: Activity of lipo-cyclic gamma-AApeptides against biofilms of Staphyloccocus epidermidisand Pseudomonas aeruginosa, Bioorg. Med. Chem. Lett. 25, 2565–2569 (2015)
  70. Papo N., Oren Z., Pag U., Sahl H.G., Shai Y.: The consequence of sequence alternation of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. J. Biol. Chem. 277, 33913–33921 (2002)
  71. Radzishevsky I.S., Rotem S., Bourdetsky D., Navon-Venezia S., Carmeli Y., Mor A.: Impoved antimicrobial peptides based on acyl-lysine oligomers. Nat. Biotechnol. 25, 657–659 (2007)
  72. Sang P., Shi Y., Teng P., Cao A.N., Xu H., Li Q., Cai J.F.: Antimicrobial AApeptides, Curr. Top. Med. Chem. 17, 1266–1279 (2017)
  73. Sarig H. Livne L., Held-Kutnetsov V., Zakoon F., Ivankin A., Gidalevitz D., Mor A.: A miniature mimic of host defense peptides with systematic antibacterial efficacy. Faseb J. 24, 1904–1913 (2010)
  74. Shai Y., Makovitzky A., Avrahami D.: Host defense peptides and lipopeptides: mode of action and potential candidates for the treatment of bacterial and fungal infections. Curr. Protein Pept. Sci. 7, 479–486 (2006)
  75. Sikorska E., Dawgul M., Greber K., Ilowska E., Pogorzelska A., Kamysz W.: Self-assebly and interactions of short antimicrobial lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. BBA.-Biomembranes, 1838, 2625–2634 (2014)10.1016/j.bbamem.2014.06.01624978107
  76. Straus S.K., Hancock R.E.W.: Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. BBA.-Biomembranes, 1758, 1215–1223 (2006)10.1016/j.bbamem.2006.02.00916615993
  77. Teng P., Cai J.F. I wsp.: Small Antimicrobial Agents Based on Acylated Reduced Amide Scaffold, J. Med. Chem. 59, 7877–7887 (2016)
  78. Wang G.: Improved Methods for Classification, Prediction and Design of Antimicrobial Peptides. Method. Mol. Cell Biol. 1268, 43–66 (2015)
  79. Wiesner J., Vilcinskas A.: Antimicrobial peptides: the ancient arm of the human immune system. Virulence, 1, 440–464 (2010)10.4161/viru.1.5.1298321178486
  80. Wódz K., Brzezińska-Błaszczyk E., Katelicydyny – endogenne peptydy przeciwdrobnoustrojowe. Postępy Biochemii, 61, 93–101 (2015)
  81. Zdybicka-Barabas A., Stączek S., Cytryńska M.: Różnorodność peptydów przeciwdrobnoustrojowych bezkręgowców. Kosmos, 66, 563–574 (2017)
  82. Zhang L.J, Gallo R.L.: Antimicrobial peptides. Curr. Biol. 26, 14–19 (2016)
  83. Żyłowska M., Wyszyńska A., Jagusztyn-Krynicka E.K.: Defensysny – peptydy o aktywności przeciwbakteryjnej. Post. Mikrobiol. 50, 223–234 (2011)
DOI: https://doi.org/10.21307/PM-2018.57.3.213 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 213 - 227
Submitted on: Jan 1, 2018
Accepted on: Jul 1, 2018
Published on: Feb 26, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Paulina Czechowicz, Joanna Nowicka, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.