Have a personal or library account? Click to login
Understanding the Correlations between Social Attention and Topic Trends of Scientific Publications Cover

Understanding the Correlations between Social Attention and Topic Trends of Scientific Publications

Open Access
|Sep 2017

References

  1. Al-Anaswah, N., & Wilfling, B. (2011). Identification of speculative bubbles using state-space models with Markov-switching. Journal of Banking & Finance, 35(5), 1073–1086.
  2. Andrew, H.C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge, UK: Cambridge University Press.
  3. Blei, D.M., Griffiths, T.L., & Jordan, M.I. (2010). The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2), article no. 7.
  4. Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
  5. Centers for Disease Control and Prevention. (2011). National diabetes fact sheet: National estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, 2011.
  6. Costa, M., & Alpuim, T. (2010). Parameter estimation of state space models for univariate observations. Journal of Statistical Planning and Inference, 140(7), 1889-1902.
  7. Daniels, S.R., Arnett, D.K., Eckel, R.H., Gidding, S.S., Hayman, L.L., Kumanyika, S., . . . Williams, C.L. (2005). Overweight in children and adolescents pathophysiology, consequences, prevention, and treatment. Circulation, 111(15), 1999-2012.
  8. De Jong, P., & Shephard, N. (1995). The simulation smoother for time series models. Biometrika, 82(2), 339–350.
  9. Dietz, W.H. (2004). Overweight in childhood and adolescence. New England Journal of Medicine, 350(9), 855–856.
  10. Dong, C., Shao, C., Richards, S.H., & Han, L.D. (2014). Flow rate and time mean speed predictions for the urban freeway network using state space models. Transportation Research Part C: Emerging Technologies, 43, 20–32.
  11. Dong, X., & Bollen, J. (2015). Computational models of consumer confidence from large-scale online attention data: Crowd-sourcing econometrics. PLOS One, 10(3): e0120039.
  12. Draper, N.R, & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: John Wiley & Sons.
  13. Durbin, J., & Koopman, S.J. (2001). Time series analysis by state space methods (2nd ed.). Oxford, UK: Oxford University Press.
  14. Freedman, D.S., Khan, L.K., Serdula, M.K., Dietz, W.H., Srinivasan, S.R., & Berenson, G.S. (2005). The relation of childhood BMI to adult adiposity: The Bogalusa heart study. Pediatrics, 115(1), 22–27
  15. Freedman, D.S., Mei, Z., Srinivasan, S.R., Berenson, G.S., & Dietz, W.H. (2007). Cardiovascular risk factors and excess adiposity among overweight children and adolescents: The Bogalusa heart study. Journal of Pediatrics, 150(1), 12–17.
  16. George, E.I., & McCulloch, R.E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881–889.
  17. Ghosh, A., Mukhopadhyay, S., Roy, S., & Bhattacharya, S. (2014). Bayesian inference in nonparametric dynamic state-space models. Statistical Methodology, 21, 35–48.
  18. Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1), 35–45.
  19. Kendall, M.G. (1962). Rank correlation methods (3rd ed.). New York: Hafner Publishing.
  20. Kietzmann, J.H., Hermkens, K., McCarthy, I.P., & Silvestre, B.S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54(3), 241–251.
  21. Kushi, L.H., Byers, T., Doyle, C., Bandera, E.V., McCullough, M., Gansler, T., . . . Thun, M.J. (2006). American Cancer Society guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. A Cancer Journal for Clinicians, 56(5), 254–281.
  22. Li, C., Ford, E.S., Zhao, G., & Mokdad, A.H. (2009). Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among US adolescents: National Health and Nutrition Examination Survey 2005–2006. Diabetes Care, 32(2), 342–347.
  23. Liang, F., Paulo, R., Molina, G., Clyde, M.A., & Berger, J.O. (2008). Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association, 103(481), 410–423.
  24. McCausland, W.J., Miller, S., & Pelletier, D. (2011). Simulation smoothing for state—space models: A computational efficiency analysis. Computational Statistics & Data Analysis, 55(1), 199–212.
  25. Poirier, D.J. (1995). Intermediate statistics and econometrics: A comparative approach. Cambridge, MA: MIT Press.
  26. Priem, J., Taraborelli, D., Groth, P., & Neylon, C. (2010). Altmetrics: A manifesto. Retrieved from http://altmetrics.org/manifesto/
  27. Rodgers, J.L., & Nicewander, W.A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42, 59–66.
  28. Rueda, C., & Rodríguez, P. (2010). State space models for estimating and forecasting fertility. International Journal of Forecasting, 26(4), 712–724.
  29. Scott, S.L., & Varian, H.R. (2014). Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, 5(1–2), 4–23.
  30. Unnikrishnan, K. (2012). Prediction of magnetic substorms using a state space model. Journal of Atmospheric and Solar-Terrestrial Physics, 75, 22–30.
  31. World Health Organization (WHO). (2015). Obesity and overweight. Fact Sheet No. 311. Retrieved from http://www.who.int/mediacentre/factsheets/fs311/en/
  32. Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing (3rd ed.). Waltham, MA: Academic Press.
  33. Zhou, J., Hu, L., Wang, F., Lu, H.H., & Zhao, K. (2013). An efficient multidimensional fusion algorithm for IoT data based on partitioning. Tsinghua Science and Technology, 18(4): 369–378.
DOI: https://doi.org/10.20309/jdis.201604 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 28 - 49
Submitted on: Jan 18, 2016
Accepted on: Feb 27, 2016
Published on: Sep 1, 2017
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Xianlei Dong, Jian Xu, Ying Ding, Chenwei Zhang, Kunpeng Zhang, Min Song, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.