References
- Al-Anaswah, N., & Wilfling, B. (2011). Identification of speculative bubbles using state-space models with Markov-switching. Journal of Banking & Finance, 35(5), 1073–1086.
- Andrew, H.C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge, UK: Cambridge University Press.
- Blei, D.M., Griffiths, T.L., & Jordan, M.I. (2010). The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2), article no. 7.
- Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
- Centers for Disease Control and Prevention. (2011). National diabetes fact sheet: National estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, 2011.
- Costa, M., & Alpuim, T. (2010). Parameter estimation of state space models for univariate observations. Journal of Statistical Planning and Inference, 140(7), 1889-1902.
- Daniels, S.R., Arnett, D.K., Eckel, R.H., Gidding, S.S., Hayman, L.L., Kumanyika, S., . . . Williams, C.L. (2005). Overweight in children and adolescents pathophysiology, consequences, prevention, and treatment. Circulation, 111(15), 1999-2012.
- De Jong, P., & Shephard, N. (1995). The simulation smoother for time series models. Biometrika, 82(2), 339–350.
- Dietz, W.H. (2004). Overweight in childhood and adolescence. New England Journal of Medicine, 350(9), 855–856.
- Dong, C., Shao, C., Richards, S.H., & Han, L.D. (2014). Flow rate and time mean speed predictions for the urban freeway network using state space models. Transportation Research Part C: Emerging Technologies, 43, 20–32.
- Dong, X., & Bollen, J. (2015). Computational models of consumer confidence from large-scale online attention data: Crowd-sourcing econometrics. PLOS One, 10(3): e0120039.
- Draper, N.R, & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: John Wiley & Sons.
- Durbin, J., & Koopman, S.J. (2001). Time series analysis by state space methods (2nd ed.). Oxford, UK: Oxford University Press.
- Freedman, D.S., Khan, L.K., Serdula, M.K., Dietz, W.H., Srinivasan, S.R., & Berenson, G.S. (2005). The relation of childhood BMI to adult adiposity: The Bogalusa heart study. Pediatrics, 115(1), 22–27
- Freedman, D.S., Mei, Z., Srinivasan, S.R., Berenson, G.S., & Dietz, W.H. (2007). Cardiovascular risk factors and excess adiposity among overweight children and adolescents: The Bogalusa heart study. Journal of Pediatrics, 150(1), 12–17.
- George, E.I., & McCulloch, R.E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881–889.
- Ghosh, A., Mukhopadhyay, S., Roy, S., & Bhattacharya, S. (2014). Bayesian inference in nonparametric dynamic state-space models. Statistical Methodology, 21, 35–48.
- Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1), 35–45.
- Kendall, M.G. (1962). Rank correlation methods (3rd ed.). New York: Hafner Publishing.
- Kietzmann, J.H., Hermkens, K., McCarthy, I.P., & Silvestre, B.S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54(3), 241–251.
- Kushi, L.H., Byers, T., Doyle, C., Bandera, E.V., McCullough, M., Gansler, T., . . . Thun, M.J. (2006). American Cancer Society guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. A Cancer Journal for Clinicians, 56(5), 254–281.
- Li, C., Ford, E.S., Zhao, G., & Mokdad, A.H. (2009). Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among US adolescents: National Health and Nutrition Examination Survey 2005–2006. Diabetes Care, 32(2), 342–347.
- Liang, F., Paulo, R., Molina, G., Clyde, M.A., & Berger, J.O. (2008). Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association, 103(481), 410–423.
- McCausland, W.J., Miller, S., & Pelletier, D. (2011). Simulation smoothing for state—space models: A computational efficiency analysis. Computational Statistics & Data Analysis, 55(1), 199–212.
- Poirier, D.J. (1995). Intermediate statistics and econometrics: A comparative approach. Cambridge, MA: MIT Press.
- Priem, J., Taraborelli, D., Groth, P., & Neylon, C. (2010). Altmetrics: A manifesto. Retrieved from http://altmetrics.org/manifesto/
- Rodgers, J.L., & Nicewander, W.A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42, 59–66.
- Rueda, C., & Rodríguez, P. (2010). State space models for estimating and forecasting fertility. International Journal of Forecasting, 26(4), 712–724.
- Scott, S.L., & Varian, H.R. (2014). Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, 5(1–2), 4–23.
- Unnikrishnan, K. (2012). Prediction of magnetic substorms using a state space model. Journal of Atmospheric and Solar-Terrestrial Physics, 75, 22–30.
- World Health Organization (WHO). (2015). Obesity and overweight. Fact Sheet No. 311. Retrieved from http://www.who.int/mediacentre/factsheets/fs311/en/
- Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing (3rd ed.). Waltham, MA: Academic Press.
- Zhou, J., Hu, L., Wang, F., Lu, H.H., & Zhao, K. (2013). An efficient multidimensional fusion algorithm for IoT data based on partitioning. Tsinghua Science and Technology, 18(4): 369–378.