Have a personal or library account? Click to login
Social media disagreement and financial markets: A comparison of stocks and Bitcoin Cover

Social media disagreement and financial markets: A comparison of stocks and Bitcoin

Open Access
|Dec 2024

References

  1. Ahn, Y., & Kim, D. (2020). Sentiment disagreement and bitcoin price fluctuations: A psycholinguistic approach. Applied Economics Letters, 27(5), 412–416. https://doi.org/10.1080/13504851.2019.1619013
  2. Ajinkya, B. B., Atiase, R. K., & Gift, M. J. (1991). Volume of trading and the dispersion in financial analysts’ earnings forecasts. The Accounting Review, 66(2), 389–401.
  3. Al-Nasseri, A., & Menla Ali, F. (2018). What does investors’ online divergence of opinion tell us about stock returns and trading volume? Journal of Business Research, 86, 166–178. https://doi.org/10.1016/j.jbusres.2018.01.006
  4. Andrei, D., & Hasler, M. (2015). Investor attention and stock market volatility. Review of Financial Studies, 28(1), 33–72. https://doi.org/10.1093/rfs/hhu059
  5. Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of Internet Stock Message Boards. The Journal of Finance, 59(3), 1259–1294. https://doi.org/10.1111/j.1540-6261.2004.00662.x
  6. Aouadi, A., Arouri, M., & Teulon, F. (2013). Investor attention and stock market activity: Evidence from France. Economic Modelling, 35, 674–681. https://doi.org/10.1016/j.econmod.2013.08.034
  7. Atiase, R. K., & Bamber, L. S. (1994). Trading volume reactions to annual accounting earnings announcements: The incremental role of predisclosure information asymmetry. Journal of Accounting and Economics, 17(3), 309–329. https://doi.org/10.1016/0165-4101(94)90031-0
  8. Atmaz, A., & Basak, S. (2018). Belief dispersion in the stock market. The Journal of Finance, 73(3), 1225–1279. https://doi.org/10.1111/jofi.12618
  9. Bamber, L. S., Barron, O. E., & Stober, T. L. (1997). Trading volume and different aspects of disagreement coincident with earnings announcements. The Accounting Review, 72(4), 575–597.
  10. Banerjee, S. (2011). Learning from prices and the dispersion in beliefs. The Review of Financial Studies, 24(9), 3025–3068. https://doi.org/10.1093/rfs/hhr050
  11. Banerjee, S., & Kremer, I. (2010). Disagreement and learning: Dynamic patterns of trade. The Journal of Finance, 65(4), 1269–1302. https://doi.org/10.1111/j.1540-6261.2010.01570.x
  12. Barron, O. E. (1995). Trading volume and belief revisions that differ among individual analysts. The Accounting Review, 70(4), 581–597.
  13. Blau, B. M., & Whitby, R. J. (2017). Range-based volatility, expected stock returns, and the low volatility anomaly. Plos One, 12(11), 0188517. https://doi.org/10.1371/journal.pone.0188517
  14. Carlin, B. I., Longstaff, F. A., & Matoba, K. (2014). Disagreement and asset prices. Journal of Financial Economics, 114(2), 226–238. https://doi.org/10.1016/j.jfineco.2014.06.007
  15. Chen, H., De, P., Hu, Y., & Hwang, B. H. (2014). Wisdom of crowds: The value of stock opinions transmitted through social media. The Review of Financial Studies, 27(5), 1367–1403. https://doi.org/10.1093/rfs/hhu001
  16. Cookson, J. A., & Niessner, M. (2020). Why don’t we agree? Evidence from a social network of investors. The Journal of Finance, 75(1), 173–228. https://doi.org/10.1111/jofi.12852
  17. Ding, R., & Hou, W. (2015). Retail investor attention and stock liquidity. Journal of International Financial Markets, Institutions and Money, 37, 12–26. https://doi.org/10.1016/j.intfin.2015.04.001
  18. Giannini, R., Irvine, P., & Shu, T. (2019). The convergence and divergence of investors’ opinions around earnings news: Evidence from a social network. Journal of Financial Markets, 42, 94–120. https://doi.org/10.1016/j.finmar.2018.12.003
  19. Graham, J. R., & Harvey, C. R. (1996). Market timing ability and volatility implied in investment newsletters’ asset allocation recommendations. Journal of Financial Economics, 42(3), 397–421. https://doi.org/10.1016/0304-405X(96)00878-1
  20. Hong, H., & Stein, J. C. (2007). Disagreement and the stock market. Journal of Economic Perspectives, 21(2), 109–128. https://doi.org/10.1257/jep.21.2.109
  21. Hutto, C., & Gilbert, E. (2014). VADER: A parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the International AAAI Conference on Web and Social Media, .(1), 216–225. https://doi.org/10.1609/icwsm.v8i1.14550
  22. Kantorovitch, I., & Heineken, J. (2021, September 10). Does dispersed sentiment drive returns, turnover, and volatility for Bitcoin? https://doi.org/10.2139/ssrn.3920987
  23. Kim, D. Y., & Ahn, Y. (2023). Emotional reactions, sentiment disagreement, and Bitcoin trading. Asia-Pacific Journal of Business, 14(4), 37–48. https://doi.org/10.32599/apjb.14.4.202312.37
  24. Knittel, M., Pitts, S., & Wash, R. (2019). “The most trustworthy coin”: How ideological tensions drive trust in Bitcoin. Proceedings of the ACM on Human–Computer Interaction, .(CSCW), 1–23. https://doi.org/10.1145/3359138
  25. Li, D., & Li, G. (2021). Whose disagreement matters? Household belief dispersion and stock trading volume. Review of Finance, 25(6), 1859–1900. https://doi.org/10.1093/rof/rfab005
  26. Li, T., van Dalen, J., & van Rees, P. J. (2018). More than just noise? Examining the information content of stock microblogs on financial markets. Journal of Information Technology, 33(1), 50–69. https://doi.org/10.1057/s41265-016-0034-2
  27. Loria, S. (2020, April 26). Textblob documentation. release 0.16.0. https://buildmedia.readthedocs.org/media/pdf/textblob/latest/textblob.pdf
  28. Siganos, A., Vagenas-Nanos, E., & Verwijmeren, P. (2017). Divergence of sentiment and stock market trading. Journal of Banking & Finance, 78, 130–141. https://doi.org/10.1016/j.jbankfin.2017.02.005
  29. Sprenger, T. O., Tumasjan, A., Sandner, P. G., & Welpe, I. M. (2014). Tweets and trades: The information content of stock microblogs. European Financial Management, 20(5), 926–957. https://doi.org/10.1111/j.1468-036X.2013.12007.x
  30. Tan, S. D., & Tas, O. (2021). Social media sentiment in international stock returns and trading activity. Journal of Behavioral Finance, 22(2), 221–234. https://doi.org/10.1080/15427560.2020.1772261
  31. Vlahavas, G., & Vakali, A. (2024). Dynamics between Bitcoin market trends and social media activity. FinTech, .(3), 349–378. https://doi.org/10.3390/fintech3030020
  32. Wang, J., Wu, K., Pan, J., & Jiang, Y. (2023). Disagreement, speculation, and the idiosyncratic volatility. Journal of Empirical Finance, 72, 232–250. https://doi.org/10.1016/j.jempfin.2023.03.011
DOI: https://doi.org/10.18559/ebr.2024.4.1683 | Journal eISSN: 2450-0097 | Journal ISSN: 2392-1641
Language: English
Page range: 189 - 213
Submitted on: Aug 6, 2024
Accepted on: Nov 25, 2024
Published on: Dec 31, 2024
Published by: Poznań University of Economics and Business Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Sergen Akarsu, Neslihan Yilmaz, published by Poznań University of Economics and Business Press
This work is licensed under the Creative Commons Attribution 4.0 License.