References
- Ahmari, S., Yang, M. & Zhong, H. (2015) Dynamic interaction between vehicle and bridge deck subjected to support settlement. Engineering Structures, 84, 172–183. DOI: 10.1016/j.engstruct.2014.11.018.
- Al’ Malul, R. & Gadzhuntsev, M. (2018) The reliability of multistory buildings with the effect of non-uniform settlements of foundation. E3S Web Conf., 33, 02040. DOI: 10.1051/e3sconf/20183302040.
- Bao, C., Ma, X., Lim, K.S., Chen, G., Xu, F., Tan, F. & Abd Hamid, N.H. (2021) Seismic fragility analysis of steel moment-resisting frame structure with differential settlement. Soil Dynamics and Earthquake Engineering, 141, 106526. DOI: 10.1016/j.soildyn.2020.106526.
- Baracous, A. (1957) The foundation failure of the Transcona Grain Elevator. Engineering Journal, 40, 973–977.
- Dabrowski, P.S., Zienkiewicz, M.H., Truong-Hong, L. & Lindenbergh, R. (2023) Assessing historical church tower asymmetry using point cloud spatial expansion. Journal of Building Engineering, 75, 107040. DOI: 10.1016/j.jobe.2023.107040.
- Dudek, M., Rusek, J., Tajduś, K. & Słowik, L. (2021) Analysis of steel industrial portal frame building subjected to loads resulting from land surface uplift following the closure of underground mine. Archives of Civil Engineering, LXVII, 283–298. DOI: 10.24425/ace.2021.138056.
- Elsawwaf, A., El Sawwaf, M., Farouk, A., Aamer, F. & El Naggar, H. (2023) Restoration of tilted buildings via micropile underpinning: A case study of a multistory building supported by a raft foundation. Buildings, 13, 422. DOI: 10.3390/buildings13020422.
- Geng, J., Meng, Z., Yin, B. & Zhu, L. (2020) Simulation on sequential construction process and structure of the Pisa Tower. Journal of Building Construction and Planning Research, 30–41.
- Gromysz, K. (2023) Reliable tilt of objects subjected to rectification and located in mining areas. Architecture, Civil Engineering, Environment, 16, 79–92. DOI: 10.2478/acee-2023-0052.
- Gromysz, K. (2021) Analysis of parameters of a rectified tank on the basis of in-situ tests. Materials, 14, 3881. DOI: 10.3390/ma14143881.
- Gromysz, K. (2019a) Revitalisation of a vertically deflected historical 16th century bell tower. IOP Conf. Ser.: Mater. Sci. Eng., 471, 052025. DOI: 10.1088/1757-899X/471/5/052025.
- Gromysz, K. (2019b) Analysis of removal method of a 19th church’s deflection. MATEC Web Conf. 284, 05005. DOI: 10.1051/matecconf/201928405005.
- Gromysz, K. (2017) Methods of removing buildings deflection used in Poland. IOP Conf. Ser.: Mater. Sci. Eng., 245, 032096. DOI: 10.1088/1757-899X/245/3/032096.
- Halicka, A. & Zyga, J. (2019) The consequences of non-uniform founding of concrete tank in weak wet subsoil. Studia Geotechnica et Mechanica, 41, 263–271. DOI: 10.2478/sgem-2019-0023.
- Jänichen, J., Dubois, C., Wolsza, M., Salepci, N. & Schmullius, C. (2020) Investigation of the ground motion near the Leaning Tower of Bad Frankenhausen using sentinel – 1 persistent scatterer interrerometry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 305–312. DOI: 10.5194/isprs-archives-XLIII-B3-2020-305-2020.
- Kaszowska, O., Gruchlik, P. & Mika, W. (2018) Industrial chimney monitoring – contemporary methods. E3S Web of Conf., 36, 01005. DOI: 10.1051/e3sconf/20183601005.
- Kijanka, M. & Kowalska, M. (2017) Inclined buildings – some reasons and solutions. IOP Conf. Ser.: Mater. Sci. Eng., 245, 022052. DOI: 10.1088/1757-899X/245/2/022052.
- Kowal, T. (2014) Proposal of the determination of damage in the form of permanentyl angled building shape (Propozycja ustalania wartości szkody w postaci trwałego wychylenia bryły budynku od pionu). Przegląd Górniczy, 164–169.
- Lamich, D., Marschalko, M., Yilmaz, I., Bednářová, P., Niemiec, D., Durďák, J., Kubečka, K. & Duda, R. (2016) Utilization of engineering geology in geo-tourism: few case studies of subsidence influence on historical churches in Ostrava-Karvina District (Czech Republic). Environ. Earth Sci., 75, 128. DOI: 10.1007/s12665-015-4993-3.
- Liu, Y. & Liu, Z. (2008) Study on stabilization and rectification technology for inclined transmission tower. Rock and Soil Mechanics, 29, 173–176.
- Macchi, G. (2005) Stabilization of the Leaning Tower of Pisa, In: Structures Congress 2005. Presented at the Structures Congress 2005, American Society of Civil Engineers, New York, 1–11. DOI: 10.1061/40753(171)152.
- Maffei, C.E.M. & Gonçalves, H.H.S. (2016) Innovative techniques used to plumb two 57 m height concrete buildings leaning 3.8 and 3.1 %. Innovative Infrastructure Solutions, 1, 33. DOI: 10.1007/s41062-016-0032-9.
- Orwat, J. (2020) Causes analysis of occurrence of the terrain surface discontinuous deformations of a linear type. J. Phys.: Conf. Ser., 1426, 012016. DOI: 10.1088/1742-6596/1426/1/012016.
- Orwat, J. & Gromysz, K. (2021) Occurrence consequences of mining terrain surface discontinuous linear deformations in a residential building. J. Phys.: Conf. Ser., 1781, 012013. DOI: 10.1088/1742-6596/1781/1/012013.
- Paszek, J. (2024) Analysis of the model used to predict continuous deformations of the land surface in areas subject to discontinuous deformations – a case study. Applied Sciences, 14, 7676. DOI: 10.3390/app14177676.
- Peng, C. (2017) The application of dynamic replacement method in deviation rectification of support pile. IOP Conf. Ser.: Earth Environ. Sci., 61, 012099. DOI: 10.1088/1755-1315/61/1/012099.
- Rapoport, V. & Alford, J. (1989) Preloading of independent leg units at locations with difficult seabed conditions. Marine Structures, 2, 451–462. DOI: 10.1016/0951-8339(89)90044-0.
- Ren, C. & Yan, B. (2015) Experimental research of the influence of differential settlement on the upper frame structures. Proceedings of the 3rd International Conference on Mechanical Engineering and Intelligent Systems (ICMEIS 2015). Presented at the 2015 3rd International Conference on Mechanical Engineering and Intelligent Systems, Atlantis Press, Yinchuan, China. DOI: 10.2991/icmeis-15.2015.100.
- Shi, M.L., Zhang, H. & Zhang, R.K. (2013) The inclination of bridge Pier due to neighboring embankment construction and its rectification technique. Applied Mechanics and Materials, 353-356, 79–83. DOI: 10.4028/www.scientific.net/AMM.353-356.79.
- Strzałkowski, P. (2022) Predicting mining areas deformations under the condition of high strength and depth of cover. Energies, 15, 4627. DOI: 10.3390/en15134627.
- Strzałkowski, P. (2019) Some remarks on impact of mining based on an example of building deformation and damage caused by mining in conditions of Upper Silesian coal basin. Pure and Applied Geophysics, 176, 2595–2605. DOI: 10.1007/s00024-019-02127-1.
- Terracina, F. (1962) Foundations of the Tower of Pisa. Géotechnique, 12, 336–339. DOI: 10.1680/geot.1962.12.4.336.
- Truong-Hong, L., Lindenbergh, R., Woudenberg, P., Gard, W. & Van de Kuilen, J.-W. (2021) Monitoring deformations of a wooden church tower by laser scanning. 12-th International Conference on Structural Analysis of Historical Constructions SAHC 2020, Delft University of Technology, 709–721.
- Yin, H.P., Li, C.L. & Xie, Z.Y. (2011) Analysis on deviation rectification and reinforcement of buildings. Advanced Materials Research, 255-260, 59–64. DOI: 10.4028/www.scientific.net/AMR.255-260.59.
- Yonglin, S., Lixin, W. & Zhi, W. (2010) Identification of inclined buildings from aerial LIDAR Data for disaster management. The 2010 18th International Conference on Geoinformatics, IEEE, Beijing, China, 1–5. DOI: 10.1109/GEOINFORMATICS.2010.5567852.
- Yuan, G., Shu, Q., Zhang, Y., Liu, T., Ji, Y. & Xu, G. (2012) Model experiment on anti-deformation performance of a self-supporting transmission tower in a subsidence area. International Journal of Mining Science and Technology, 22, 57–61. DOI: 10.1016/j.ijmst.2011.07.006.
- Zhang, X., Shan, R. & Lu, M. (2018) Rectification of jacking method for brick-wooden buildings in deformation analysis with CFST reinforcement. The Structural Design of Tall Special Buildings, 27, e1439. DOI: 10.1002/tal.1439.