References
- Barabash, V.M. (1977) Approximate description of the stress-strain state of a steel-concrete beam. Collection of Scientific Articles of LPI, Lviv, 3–6.
- Barabash, V.M. (1988a) Analytical Chart Presentation of Concrete Deformation. Works Investigation and Methods Improvement of Reinforced Concrete Structures Calculation: Report thesis. Lviv, 11–12 (in Ukrainian).
- Barabash, V.M. (1988b) Analytical Representation of Concrete Deformation Diagrams. Abstracts of the Scientific and Technical Conference Investigation of Work and Improvement of Reinforced Concrete Structures Calculation Methods. Lviv, Polytechnic Institute, 11–12.
- Barabash, V.M. (1995) Vrakhuvannja nelinijnosti deformuvannja zalizobetonnykh sterzhniv.2-jmizhnarodnyj sympozium ukrajinsjkykh inzheneriv-mekhanikiv u Ljvovi. Tezy dopovidej Ukrajinsjke inzhenerne tovarystvo u Ljvovi, Derzhavnyj universytet «Ljvivsjka politekhnika», 4–6 travnja, Ljviv, v-vo derzh. universytetu «Ljvivsjka politekhnika», 42–43.
- Complete Guide to Turbo Pascal 7.0. (1983). Borland International, Inc., 700 p.
- DSTU 3760:2019 Reinforcing Steel for Reinforced Concrete Structures. General Technical Conditions.
- DSTU 8943:2019 Electric-Welded Steel Pipes. Technical Conditions.
- Kholod, P.F. (2000) Micnistj zalizobetonnykh kolon z poperednjoju stysnutoju vysokomicnoju armaturoju. Dys. kand. tekhn. nauk: 05.23.01. Ljviv.
- Kholod, P.F., & Shmyh, R.A. (2010) Simulation of the stress-strain state of concrete columns with pre-compressed high-strength reinforcement. Bulletin of the National University “Lviv Polytechnic”. Theory and Practice of Construction, 781, 67–71. Available at:
http://nbuv.gov.ua/UJRN/VNULPTPB_2014_781_14 . - Klymenko, F.Ye., & Shmyh, R.A. (1994) Calculation model of stress state and stress computation in the cross-section of a steel-concrete rod under bending. Materials of the International Scientific and Practical Conference Improvement of Building Materials, Technologies, and Calculation Methods of Structures in New Economic Conditions. Sumy, 45–81.
- Lancaster, P. (1985) Matrix Theory. University of Calgary,
https://www.researchgate.net/publication/243781124 . - Onysjkiv, B.M., & Kholod, P.F. (1994). Metodyka rozrakhunku korotkykh stysnutykh zalizobetonnykh elementiv, armovanykh vysokomicnoju armaturoju. Visnyk LPI, 278 «Rezervy proghresu v arkhitekturi ta budivnyctvi». Vyd-vo «Svit», Ljviv, 77–82.
- Onyskiv, B.M., Kholod, P.F., Barabash, V.M., & Shmyh, R.A. (2001) Determination of the stress-strain state of reinforced concrete columns considering real “σ-ε” material diagrams. Bulletin of LDAU: Architecture and Agricultural Construction, 2, 100–107.
- Pysarenko, Gh.S., Kvitka, O.L., Umansjkyj, E.S. (2004) Opir materialiv. K., Vyshha shkola.
- Yermolenko, D.A. (1997) Calculation of CFST Structures with Reinforcement Bars. Collection of Articles Problems of Reinforced Concrete Theory and Practice. Poltava, 141–144.
- Yermolenko, D.A., & Demchenko, O.V. (2017) Evaluation of the efficiency of using high-strength concrete in concrete-filled steel tube (CFST) structures. Collection of Scientific Papers of the Ukrainian State University of Railway Transport, 170, 42–47. Available at:
http://nbuv.gov.ua/UJRN/Znpudazt_2017_170_7 . - Yermolenko, D.A., Hasenko, A.V., & Demchenko, O.V. (2015) Numerical modeling of the compressed CFST element with high-strength concrete cores. Resource-Efficient Materials, Structures, Buildings, and Constructions, 31, 273–280. Available at:
http://nbuv.gov.ua/UJRN/rmkbs_2015_31_37 .