Have a personal or library account? Click to login
Application of data science methods, including machine learning, in the classification of focal lesions in the thyroid gland Cover

Application of data science methods, including machine learning, in the classification of focal lesions in the thyroid gland

Open Access
|Dec 2025

References

  1. Dobruch-Sobczak K, Adamczewski Z, Szczepanek-Parulska E, Migda B, Woliński K, Krauze A et al.: Histopathological verification of the diagnostic performance of the EU-TIRADS classification of thyroid nodules-results of a multicenter study performed in a previously iodine-deficient region. J Clin Med 2019; 8: 1781. doi: 10.3390/jcm8111781.
  2. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L: European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6: 225–237. doi: 10.1159/000478927.
  3. Jarząb B, Dedecjus M, Lewiński A, Adamczewski Z, Bakuła-Zalewska E, Bałdys-Waligórska A et al.: Diagnosis and treatment of thyroid cancer in adult patients – recommendations of polish scientific societies and the National Oncological Strategy. 2022 Update [Diagnostyka i leczenie raka tarczycy u chorych dorosłych – rekomendacje polskich towarzystw naukowych oraz Narodowej Strategii Onkologicznej. Aktualizacja na rok 2022]. Endokrynol Pol 2022; 73: 173–300. doi: 10.5603/EP.a2022.0028.
  4. Deng Y, Li H, Wang M, Li N, Tian T, Wu Y et al.: Global burden of thyroid cancer from 1990 to 2017. JAMA Netw Open 2020; 3: e208759. doi: 10.1001/jamanetworkopen.2020.8759.
  5. Liu H, Ma AL, Zhou YS, Yang DH, Ruan JL, Liu XD, Luo BM: Variability in the interpretation of grey-scale ultrasound features in assessing thyroid nodules: A systematic review and meta-analysis. Eur J Radiol 2020; 129: 109050. doi: 10.1016/j.ejrad.2020.109050.
  6. Habchi Y, Himeur Y, Kheddar H, Boukabou A, Atalla S, Chouchane A et al.: AI in thyroid cancer diagnosis: techniques, trends, and future directions. Systems 2023; 11: 519. doi: 10.3390/systems11100519.
  7. Tessler FN, Thomas J: Artificial intelligence for evaluation of thyroid nodules: a primer. Thyroid 2023; 33: 150–158. doi: 10.1089/thy.2022.0560.
  8. Hayashi C, Yajima K, Bock HH, Ohsumi N, Tanaka Y, Baba Y: Data Science, Classification, and Related Methods. Proceedings of the Fifth Conference of the International Federation of Classification Societies (IFCS-96), Kobe, Japan, March 27–30, 1996. Springer Japan, 1998.
  9. Caruana R, Niculescu-Mizil A: An empirical comparison of supervised learning algorithms. In ACM Press; 2006; 161–168. doi: 10.1145/1143844.1143865
  10. Rodriguez JD, Perez A, Lozano JA: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 2010; 32: 569–575. doi: 10.1109/TPAMI.2009.187.
  11. Rodríguez JD, Pérez A, Lozano JA. Sensitivity analysis of kappa-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell. 2010 Mar;32(3):569–75. doi: 10.1109/TPAMI.2009.187. PMID: 20075479.
  12. Topcuoglu OM, Uzunoglu B, Orhan T, Basaran EB, Gormez A, Sarica O. A real-world comparison of the diagnostic performances of six different TI-RADS guidelines, including ACR-/Kwak-/K-/EU-/ATA-/C-TIRADS. Clin Imaging 2025; 117: 110366. doi: 10.1016/j.clinimag.2024.110366.
  13. Durante C, Hegedüs L, Na DG, Papini E, Sipos JA, Baek JH et al.: International Expert Consensus on US Lexicon for Thyroid Nodules. Radiology 2023; 309: e231481. doi: 10.1148/radiol.231481.
  14. Böhland M, Tharun L, Scherr T, Mikut R, Hagenmeyer V, Thompson LDR et al. Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis. PLoS One 2021; 16: e0257635. doi: 10.1371/journal.pone.0257635.
  15. Hornik K, Meyer D, Karatzoglou A: Support vector machines in R. Journal of Statistical Software 2006; 15. doi: 10.18637/jss.v015.i09.
  16. Hsu CW, Chang CC, Lin CJ: A Practical Guide to Support Vector Classification. www.csie.ntu.edu.tw/~cjlin 8.8. 2003.
  17. Bennett KP, Campbell C: Support Vector Machines: Hype or Hallelujah? ACM SIGKDD Explorations Newsletter 2000; 2: 1–13. doi: 10.1145/380995.380999.
  18. Peng S, Liu Y, Lv W, Liu L, Zhou Q, Yang H et al.: Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. Lancet Digit Health 2021; 3: e250–e259. doi: 10.1016/S2589-7500(21)00041-8. Erratum in: Lancet Digit Health 2021; 3: e413.
  19. Xi NM, Wang L, Yang C: Improving the diagnosis of thyroid cancer by machine learning and clinical data. Sci Rep 2022; 12: 11143. doi: 10.1038/s41598-022-15342-z. Erratum in: Sci Rep 2022; 12: 13252. doi: 10.1038/s41598-022-17659-1.
DOI: https://doi.org/10.15557/jou.2025.0036 | Journal eISSN: 2451-070X | Journal ISSN: 2084-8404
Language: English
Submitted on: Jul 8, 2025
|
Accepted on: Dec 16, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Paweł Mariusz Gadzicki, Małgorzata Krzywicka, Katarzyna Dobruch-Sobczak, Bartosz Migda, Ewelina Szczepanek-Parulska, Agnieszka Wosiak, Zbigniew Adamczewski, published by MEDICAL COMMUNICATIONS Sp. z o.o.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.