References
- Dobruch-Sobczak K, Adamczewski Z, Szczepanek-Parulska E, Migda B, Woliński K, Krauze A et al.: Histopathological verification of the diagnostic performance of the EU-TIRADS classification of thyroid nodules-results of a multicenter study performed in a previously iodine-deficient region. J Clin Med 2019; 8: 1781. doi: 10.3390/jcm8111781.
- Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L: European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6: 225–237. doi: 10.1159/000478927.
- Jarząb B, Dedecjus M, Lewiński A, Adamczewski Z, Bakuła-Zalewska E, Bałdys-Waligórska A et al.: Diagnosis and treatment of thyroid cancer in adult patients – recommendations of polish scientific societies and the National Oncological Strategy. 2022 Update [Diagnostyka i leczenie raka tarczycy u chorych dorosłych – rekomendacje polskich towarzystw naukowych oraz Narodowej Strategii Onkologicznej. Aktualizacja na rok 2022]. Endokrynol Pol 2022; 73: 173–300. doi: 10.5603/EP.a2022.0028.
- Deng Y, Li H, Wang M, Li N, Tian T, Wu Y et al.: Global burden of thyroid cancer from 1990 to 2017. JAMA Netw Open 2020; 3: e208759. doi: 10.1001/jamanetworkopen.2020.8759.
- Liu H, Ma AL, Zhou YS, Yang DH, Ruan JL, Liu XD, Luo BM: Variability in the interpretation of grey-scale ultrasound features in assessing thyroid nodules: A systematic review and meta-analysis. Eur J Radiol 2020; 129: 109050. doi: 10.1016/j.ejrad.2020.109050.
- Habchi Y, Himeur Y, Kheddar H, Boukabou A, Atalla S, Chouchane A et al.: AI in thyroid cancer diagnosis: techniques, trends, and future directions. Systems 2023; 11: 519. doi: 10.3390/systems11100519.
- Tessler FN, Thomas J: Artificial intelligence for evaluation of thyroid nodules: a primer. Thyroid 2023; 33: 150–158. doi: 10.1089/thy.2022.0560.
- Hayashi C, Yajima K, Bock HH, Ohsumi N, Tanaka Y, Baba Y: Data Science, Classification, and Related Methods. Proceedings of the Fifth Conference of the International Federation of Classification Societies (IFCS-96), Kobe, Japan, March 27–30, 1996. Springer Japan, 1998.
- Caruana R, Niculescu-Mizil A: An empirical comparison of supervised learning algorithms. In ACM Press; 2006; 161–168. doi: 10.1145/1143844.1143865
- Rodriguez JD, Perez A, Lozano JA: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 2010; 32: 569–575. doi: 10.1109/TPAMI.2009.187.
- Rodríguez JD, Pérez A, Lozano JA. Sensitivity analysis of kappa-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell. 2010 Mar;32(3):569–75. doi: 10.1109/TPAMI.2009.187. PMID: 20075479.
- Topcuoglu OM, Uzunoglu B, Orhan T, Basaran EB, Gormez A, Sarica O. A real-world comparison of the diagnostic performances of six different TI-RADS guidelines, including ACR-/Kwak-/K-/EU-/ATA-/C-TIRADS. Clin Imaging 2025; 117: 110366. doi: 10.1016/j.clinimag.2024.110366.
- Durante C, Hegedüs L, Na DG, Papini E, Sipos JA, Baek JH et al.: International Expert Consensus on US Lexicon for Thyroid Nodules. Radiology 2023; 309: e231481. doi: 10.1148/radiol.231481.
- Böhland M, Tharun L, Scherr T, Mikut R, Hagenmeyer V, Thompson LDR et al. Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis. PLoS One 2021; 16: e0257635. doi: 10.1371/journal.pone.0257635.
- Hornik K, Meyer D, Karatzoglou A: Support vector machines in R. Journal of Statistical Software 2006; 15. doi: 10.18637/jss.v015.i09.
- Hsu CW, Chang CC, Lin CJ: A Practical Guide to Support Vector Classification.
www.csie.ntu.edu.tw/~cjlin 8.8. 2003. - Bennett KP, Campbell C: Support Vector Machines: Hype or Hallelujah? ACM SIGKDD Explorations Newsletter 2000; 2: 1–13. doi: 10.1145/380995.380999.
- Peng S, Liu Y, Lv W, Liu L, Zhou Q, Yang H et al.: Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. Lancet Digit Health 2021; 3: e250–e259. doi: 10.1016/S2589-7500(21)00041-8. Erratum in: Lancet Digit Health 2021; 3: e413.
- Xi NM, Wang L, Yang C: Improving the diagnosis of thyroid cancer by machine learning and clinical data. Sci Rep 2022; 12: 11143. doi: 10.1038/s41598-022-15342-z. Erratum in: Sci Rep 2022; 12: 13252. doi: 10.1038/s41598-022-17659-1.