Have a personal or library account? Click to login
Fetal cardiac function by three-dimensional ultrasound using 4D-STIC and VOCAL – an update Cover

References

  1. CDC – Centers for Disease and Prevention. Congenital Heart Defects [cited 2019 May 12]. Available from: http://www.cdc.gov/heartdefects/.
  2. Hoffman JI, Kaplan S: The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 1890–1900.
  3. Nelle M, Raio L, Pavlovic M, Carrel T, Surbek D, Meyer-Wittkopf M: Prenatal diagnosis and treatment planning of congenital heart defects-possibilities and limits. World J Pediatr 2009; 5: 18–22.
  4. Eurocat – European Surveillance of congenital anomalies [cited 2019 May 12]. Available from: http://www.eurocat-network.eu/statisticalmon-itoring-2009.
  5. Allan L: Impact of prenatal diagnosis on the paediatric management of heart defects. Fetal Mater Med Rev 2004; 15: 327–341.
  6. Donofrio MT, Skurow-Todd K, Berger JT, McCarter R, Fulgium A, Krishnan A et al.: Risk-stratified postnatal care of newborns with congenital heart disease determined by fetal echocardiography. J Am Soc Echocardiogr 2015; 28: 1339–1349.
  7. Słodki M, Respondek-Liberska M, Pruetz JD, Donofrio MT: Fetal cardiology: changing the definition of critical heart disease in the newborn. J Perinatol 2016; 36: 575–580.
  8. Van Mieghem T, Hodges R, Jaeggi E, Ryan G: Functional echocardiography in the fetus with non-cardiac disease. Prenat Diagn 2014; 34: 23–32.
  9. Bravo-Valenzuela NJ, Peixoto AB, Nardozza LM, Souza AS, Araujo Júnior E: Applicability and technical aspects of two-dimensional ultrasonography for assessment of fetal heart function. Med Ultrason 2017; 19: 94–101.
  10. Crispi F, Gratacós E: Fetal cardiac function: technical considerations and potential research and clinical applications. Fetal Diagn Ther 2012; 32: 47–64.
  11. Gardiner HM: Foetal cardiac function: assessing new technologies. Cardiol Young 2014; 24 Suppl 2: 26–35.
  12. Barker PC, Houle H, Li JS, Miller S, Herlong JR, Camitta MG: Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac function: novel experience with velocity vector imaging. Echocardiography 2009; 26: 28–36.
  13. Miranda JO, Cerqueira RJ, Ramalho C, Areias JC, Henriques-Coelho T: Fetal cardiac function in maternal diabetes: a conventional and speckle-tracking echocardiographic study. J Am Soc Echocardiogr 2018; 31: 333–341.
  14. Molina FS, Faro C, Sotiriadis A, Dagklis T, Nicolaides KH: Heart stroke volume and cardiac output by four-dimensional ultrasound in normal fetuses. Ultrasound Obstet Gynecol 2008; 32: 181–187.
  15. Simioni C, Nardozza LM, Araujo Júnior E et al.: Fetal cardiac function assessed by spatio-temporal image correlation. Arch Gynecol Obstet 2011; 284: 253–260.
  16. Tei C, Ling LH, Hodge DO, Bailey KR, Oh JK, Rodeheffer RJ et al.: New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function – a study in normals and dilated cardiomyopathy. J Cardiol 1995; 26: 357–366.
  17. Figueroa H, Silva MC, Kottmann C, Viguera S, Valenzuela I, Hernandez-Andrade E et al.: Fetal evaluation of the modified-myocardial performance index in pregnancies complicated by diabetes. Prenat Diagn 2012; 32: 943–948.
  18. Bhorat IE, Bagratee JS, Pillay M, Reddy T: Use of the myocardial performance index as a prognostic indicator of adverse fetal outcome in poorly controlled gestational diabetic pregnancies. Prenat Diagn 2014, 34: 1301–1306.
  19. Peixoto AB, Bravo-Valenzuela NJ, Martins WP, Mattar R, Moron AF, Araujo Júnior E: Reference ranges for the left ventricle modified myocardial performance index, respective time periods, and atrioventricular peak velocities between 20 and 36 + 6 weeks of gestation. J Matern Fetal Neonatal Med 2019; 2: 1–10. Doi: 10.1080/14767058.2019.1609933.
  20. Cruz-Lemini M, Crispi F, Valenzuela-Alcaraz B, Figueras F, Sitges M, Gómez O et al.: Value of annular M-mode displacement vs tissue Doppler velocities to assess cardiac function in intrauterine growth restriction. Ultrasound Obstet Gynecol 2013; 42: 175–181.
  21. Messing B, Gilboa Y, Lipschuetz M, Valsky DV, Cohen SM, Yagel S: Fetal tricuspid annular plane systolic excursion (f-TAPSE): evaluation of fetal right heart systolic function with conventional M-mode ultrasound and spatiotemporal image correlation (STIC) M-mode. Ultrasound Obstet Gynecol 2013; 42: 182–188.
  22. Tedesco GD, de Souza Bezerra M, Barros FSB, Martins WP, Nardozza LMM, Mattar R et al.: Fetal heart function by tricuspid annular plane systolic excursion and ventricular shortening fraction using STIC M-mode: reference ranges and validation. Am J Perinatol 2017; 34: 1354–1361.
  23. Mielke G, Benda N: Cardiac output and central distribution of blood flow in the human fetus. Circulation 2001; 103: 1662–1668.
  24. Gagnon C, Bigras JL, Fouron JC, Dallaire F: Reference values and Z scores for pulsed-wave Doppler and M-mode measurements in fetal echocardiography. J Am Soc Echocardiogr 2016; 29: 448–460.e9.
  25. Mao YK, Zhao BW, Zhou L, Wang B, Chen R, Wang SS: Z-score reference ranges for pulsed-wave Doppler indices of the cardiac outflow tracts in normal fetuses. Int J Cardiovasc Imaging 2019; 35: 811–825.
  26. Rocha LA, Rolo LC, Nardozza LM, Tonni G, Araujo Júnior E: Z-score reference ranges for fetal heart functional measurements in a large brazilian pregnant women sample. Pediatr Cardiol 2019; 40: 554–562.
  27. Huhta JC: Fetal congestive heart failure. Sem Fetal Neonatal Med 2005; 10: 542–552.
  28. Hamill N, Yeo L, Romero R, Hassan SS, Myers SA, Mittal P et al.: Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol 2011; 205: 76.e1–10.
  29. Tongsong T, Wanapirak C, Piyamongkol W, Sirichotiyakul S, Tongprasert F, Srisupundit K et al.: Fetal ventricular shortening fraction in hydrops fetalis. Obstet Gynecol 2011; 117: 84–91.
  30. DeVore GR, Falkensammer P, Sklansky MS, Platt LD: Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart. Ultrasound Obstet Gynecol 2003; 22: 380–387.
  31. Viñals F, Ascenzo R, Naveas R, Huggon I, Giuliano A: Fetal echocardiography at 11 + 0 to 13 + 6 weeks using four-dimensional spatiotemporal image correlation telemedicine via an Internet link: a pilot study. Ultrasound Obstet Gynecol 2008; 31: 633–638.
  32. Gonçalves LF, Lee W, Espinoza J, Romero R: Examination of the fetal heart by four-dimensional (4D) ultrasound with spatio-temporal image correlation (STIC). Ultrasound Obstet Gynecol 2006; 27: 336–348.
  33. Rizzo G, Capponi A, Cavicchioni O, Vendola M, Arduini D: Fetal cardiac stroke volume determination by four-dimensional ultrasound with spatio-temporal image correlation compared with two-dimensional and Doppler ultrasonography. Prenat Diagn 2007; 27: 1147–1150.
  34. Rizzo G, Capponi A, Pietrolucci ME, Arduini D: Role of sonographic automatic volume calculation in measuring fetal cardiac ventricular volumes using 4-dimensional sonography: comparison with virtual organ computer-aided analysis. J Ultrasound Med 2010; 29: 261–270.
  35. Bhat AH, Corbett VN, Liu R, Carpenter ND, Liu NW, Wu AM et al.: Fetal ventricular mass determination on three-dimensional echocardiography: studies in normal fetuses and validation experiments. Circulation 2004; 110: 1054–1060.
  36. Messing B, Cohen SM, Valsky DV, Rosenak D, Hochner-Celnikier D, Savchev S et al.: Fetal cardiac ventricle volumetry in the second half of gestation assessed by 4D ultrasound using STIC combined with inversion mode. Ultrasound Obstet Gynecol 2007; 30: 142–151.
  37. Hamill N, Romero R, Hassan SS, Lee W, Myers SA, Mittal P et al.: Repeatability and reproducibility of fetal cardiac ventricular volume calculations using spatiotemporal image correlation and virtual organ computer-aided analysis. J Ultrasound Med 2009; 28: 1301–1311.
  38. Uittenbogaard LB, Haak MC, Peters RJ, van Couwelaar GM, Van Vugt JM: Validation of volume measurements for fetal echocardiography using four-dimensional ultrasound imaging and spatiotemporal image correlation. Ultrasound Obstet Gynecol 2010; 35: 324–331.
  39. Simioni C, Nardozza LM, Araujo Júnior E, Rolo LC, Zamith M, Caetano AC et al.: Heart stroke volume, cardiac output, and ejection fraction in 265 normal fetus in the second half of gestation assessed by 4D ultrasound using spatio-temporal image correlation. J Matern Fetal Neonatal Med 2011; 24: 1159–1167.
  40. Schoonderwaldt EM, Groenenberg IA, Hop WC, Wladimiroff JW, Steegers EA: Reproducibility of echocardiographic measurements of human fetal left ventricular volumes and ejection fractions using four-dimensional ultrasound with the spatio-temporal image correlation modality. Eur J Obstet Gynecol Reprod Biol 2012; 160: 22–29.
  41. Simioni C, Araujo Júnior E, Martins WP, Rolo LC, Rocha LA, Nardozza LM et al.: Fetal cardiac output and ejection fraction by spatio-temporal image correlation (STIC): comparison between male and female fetuses. Rev Bras Cir Cardiovasc 2012; 27: 275–282.
  42. DeKoninck P, Steenhaut P, Van Mieghem T, Mhallem M, Richter J, Bernard P et al.: Comparison of Doppler-based and three-dimensional methods for fetal cardiac output measurement. Fetal Diagn Ther 2012; 32: 72–78.
  43. Hamill N, Romero R, Hassan S, Lee W, Myers SA, Mittal P et al.: The fetal cardiovascular response to increased placental vascular impedance to flow determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol 2013; 208: 153.e1–13.
  44. Rolo LC, Santana EF, da Silva PH, Costa Fda S, Nardozza LM, Tonni G et al.: Fetal cardiac interventricular septum: volume assessment by 3D/4D ultrasound using spatio-temporal image correlation (STIC) and virtual organ computer-aided analysis (VOCAL). Matern Fetal Neonatal Med 2015; 28: 1388–1393.
  45. Barros FS, Rolo LC, Rocha LA, Martins WP, Nardozza LM, Moron AF et al.: Reference ranges for the volumes of fetal cardiac ventricular walls by three-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis and its validation in fetuses with congenital heart diseases. Prenat Diagn 2015; 35: 65–73.
  46. Araujo Júnior E, Novoa Y Novoa VA, Barros FS, Rocha LA, Peixoto AB, Martins WP et al.: Reference values for the volumes of foetal heart atrial wall by three-dimensional ultrasound using STIC and VOCAL methods between 20w0d and 33w6d weeks of gestation. J Matern Fetal Neonatal Med 2016; 29: 3076–3083.
DOI: https://doi.org/10.15557/jou.2019.0043 | Journal eISSN: 2451-070X | Journal ISSN: 2084-8404
Language: English
Page range: 287 - 294
Submitted on: Jul 25, 2019
Accepted on: Oct 16, 2019
Published on: Dec 31, 2019
Published by: MEDICAL COMMUNICATIONS Sp. z o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Nathalie Jeanne Bravo-Valenzuela, Alberto Borges Peixoto, Milene Carvalho Carrilho, Ana Letícia Siqueira Pontes, Caroline Cevante Chagas, Christiane Simioni, Edward Araujo Júnior, published by MEDICAL COMMUNICATIONS Sp. z o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.