[9] FAURE, H.: Selection criteria for (random) generation of digital (0,s)-sequences. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, (H. Niederreiter and D. Talay, eds.), Springer-Verlag, Berlin (2006), pp. 113–126.
[11] FAURE, H—KRITZER, P.—PILLICHSHAMMER, F.: From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules, Indag. Math. 26 (2015), 760–822.10.1016/j.indag.2015.09.001
[15] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.
[18] NIEDERREITER, H.: Applications of diophantine approximations to numerical integration, In: Diophantine Approximation and Its Applications, (C.F. Osgood, ed.), Academic Press, New York, 1973, pp. 129–199.
[19] NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
[20] OSTROMOUKHOV, V.: Recent progress in improvement of extreme discrepancy and star discrepancy of one-dimensional Sequences, In: Monte Carlo and Quasi-Monte Carlo Methods 2008, (P. L’Ecuyer, and A. B. Owen, eds.), Springer-Verlag, Berlin, 2009, pp. 561–572.10.1007/978-3-642-04107-5_36
[24] ZAREMBA, S. K.: La méthode des bons treillis pour le calcul des intégrals multiples. In: Applications of Number Theory to Numerical Analysis, (S. K. Zaremba, ed.), (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971), Academic Press, New York, 1972, pp. 39–119.