Have a personal or library account? Click to login
On the Discrepancy of Two Families of Permuted Van der Corput Sequences Cover

On the Discrepancy of Two Families of Permuted Van der Corput Sequences

Open Access
|Jul 2018

References

  1. [1] BOURGAIN, J.—KONTOROVICH, A.: On Zaremba’s conjecture, Ann. of Math. 180 (2014), no. 2. 1–6
  2. [2] CARLITZ, L.: Permutations in a finite field, Proc. Amer. Math. Soc. 4 (1953), 538.10.1090/S0002-9939-1953-0055965-8
  3. [3] CHAIX, H.—FAURE, H.: Discrépance et diaphonie en dimension un, Acta Arith. 63 (1993), 103–141.10.4064/aa-63-2-103-141
  4. [4] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences. Cambridge Univ. Press, Cambridge, England, 2010.10.1017/CBO9780511761188
  5. [5] DRMOTA, M.—TICHY, R. F.: Sequences, Discrepancies and Applications. In: Lecture Notes in Math. Vol. 1651. Springer-Verlag, Berlin, 1997.
  6. [6] FAURE, H.: Discrépance de suites associéesàunsystème de numération (en dimension un), Bull. Soc. Math. France 109 (1981), no 2, 143–182.
  7. [7] FAURE, H.: Good permutations for extreme discrepancy, J. Number Theory 42 (1992), 47–56.10.1016/0022-314X(92)90107-Z
  8. [8] FAURE, H.: Irregularities of distribution of digital (0, 1)-sequences in prime base, Integers 5 (2005), no. 3, A7, 12 pages.
  9. [9] FAURE, H.: Selection criteria for (random) generation of digital (0,s)-sequences. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, (H. Niederreiter and D. Talay, eds.), Springer-Verlag, Berlin (2006), pp. 113–126.
  10. [10] FAURE, H.: Star extreme discrepancy of generalized two-dimensional Hammersley point sets, Unif. Distrib. Theory 3 (2008), no. 2, 45–65.
  11. [11] FAURE, H—KRITZER, P.—PILLICHSHAMMER, F.: From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules, Indag. Math. 26 (2015), 760–822.10.1016/j.indag.2015.09.001
  12. [12] FAURE, H.—LEMIEUX, C.: Generalized Halton Sequences in 2008: A Comparative Study, ACM Trans. Model. Comp. Sim. 19 (2009), no. 15, 1–31.
  13. [13] HUANG, S.: An Improvement to Zaremba’s Conjecture. Geometric and Functional Analysis 25 (2015), 860–914.
  14. [14] KHINCHIN, A. YA.: Continued Fractions. The University of Chicago Press, Chicago, Ill.-London, 1964.10.1063/1.3051235
  15. [15] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.
  16. [16] LARCHER, G.: On the discrepancy of sequences in the unit-interval, Indag. Math., New Series 27 (2016), 546–558.
  17. [17] MATOUŠEK, J.: On the L2-discrepancy for anchored boxes, J. Complexity 14 (1998), 527–556.10.1006/jcom.1998.0489
  18. [18] NIEDERREITER, H.: Applications of diophantine approximations to numerical integration, In: Diophantine Approximation and Its Applications, (C.F. Osgood, ed.), Academic Press, New York, 1973, pp. 129–199.
  19. [19] NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
  20. [20] OSTROMOUKHOV, V.: Recent progress in improvement of extreme discrepancy and star discrepancy of one-dimensional Sequences, In: Monte Carlo and Quasi-Monte Carlo Methods 2008, (P. L’Ecuyer, and A. B. Owen, eds.), Springer-Verlag, Berlin, 2009, pp. 561–572.10.1007/978-3-642-04107-5_36
  21. [21] PAUSINGER, F.: Weak multipliers for generalized van der Corput sequences, J. Théor. Nombres Bordeaux 24 (2012), no. 3, 729–749.
  22. [22] SCHMIDT, W. M.: Irregularities of distribution VII, Acta Arith. 21 (1972), 45–50.10.4064/aa-21-1-45-50
  23. [23] TOPUZOĞLU, A.: The Carlitz rank of permutations of finite fields: a survey, J. Symb. Comput. 64 (2014), 53–66.10.1016/j.jsc.2013.07.004
  24. [24] ZAREMBA, S. K.: La méthode des bons treillis pour le calcul des intégrals multiples. In: Applications of Number Theory to Numerical Analysis, (S. K. Zaremba, ed.), (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971), Academic Press, New York, 1972, pp. 39–119.
DOI: https://doi.org/10.1515/udt-2018-0003 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 47 - 64
Submitted on: Mar 31, 2017
|
Accepted on: Jul 10, 2017
|
Published on: Jul 20, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Florian Pausinger, Alev Topuzoğlu, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.