[3] BAI, Z. Q.: Multifractal analysis of the spectral measure of the Thue-Morse sequence: a periodic orbit approach, J. Phys. A: Math. Gen. 39 (2006), 1959–1973.
[4] BUGEAUD, Y—CIPU, M.—MIGNOTTE, M.: On the representation of Fibonacci and Lucas numbers in an integer base, Ann. Math. Qu. 37 (2013), 31–43.10.1007/s40316-013-0002-y
[14] GELFOND, A. O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259–265.10.4064/aa-13-3-259-265
[15] GODRÈCHE, C.—LUCK, J.M.: Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar structures. J. Phys. A 23 (1990), 3769–3797.
[16] GRABNER, P. J.—LIARDET, P.—TICHY, R. F.: Spectral disjointness of dynamical systems related to some arithmetic functions. Publ. Math. Debrecen 66 (2005), 213–243.
[17] HARE, K.—ROGINSKAYA, M.: A Fourier series formula for energy of measures with applications to Riesz products. Proc. Amer. Math. Soc. 131 (2003), 165–174.
[20] KAMAE, T.: Number-theoretic problems involving two independent bases. In: Number theory and cryptography (Sydney, 1989), London Math. Soc. Lecture Note Ser., Vol. 154, Cambridge Univ. Press, Cambridge, 1990, pp. 196–203.10.1017/CBO9781107325838.018
[35] TENENBAUM, G.: Sur la non dérivabilitédefonctions périodiques associées à certaines formules sommatoires In: The mathematics of Paul Erd˝os, I, Algorithms Combin. Vol. 13, Springer-Verlag, Berlin, 1997. pp. 117–128,10.1007/978-3-642-60408-9_10