Have a personal or library account? Click to login
On Hausdorff Dimensions Related to Sets with Given Asymptotic and Gap Densities Cover

On Hausdorff Dimensions Related to Sets with Given Asymptotic and Gap Densities

Open Access
|Jan 2017

Abstract

For a set A of positive integers a1< a2< · · ·, let d(A), d¯(A)$\overline d (A)$ denote its lower and upper asymptotic densities. The gap density is defined as λ(A)=limsupnan+1an$\lambda (A) = \lim \;{\rm sup} _{n \to \infty } {{a_{n + 1} } \over {a_n }}$. The paper investigates the class 𝒢(α, β, γ) of all sets A with d(A) = α, d¯(A)=β$\overline d (A) = \beta $ and λ(A) = γ for given α, β, γ with 0 ≤ α ≤ β ≤ 1 ≤ γ and αγ ≤ β. Using the classical dyadic mapping ϱ(A)=n=1χA(n)2n$\varrho (A) = \sum\nolimits_{n = 1}^\infty {{{\chi _A (n)} \over {2^n }}} $, where χA is the characteristic function of A, the main result of the paper states that the ϱ-image set ϱ𝒢(α, β, γ) has the Hausdorff dimension dimϱ𝒢(α,β,γ)=min{δ(α),δ(β),1γmaxσ[αγ,β]δ(σ)},$$\dim \varrho \cal {G}(\alpha ,\beta ,\gamma ) = \min \left\{ {\delta (\alpha ),\delta (\beta ), { 1 \over \gamma }\mathop {\max }\limits_{\sigma \in [\alpha \gamma ,\beta ]} \delta (\sigma )} \right\},$$ where δ is the entropy function δ(x)=xlog2x(1x)log2(1x).$$\delta (x) = - x\log _2 x - (1 - x)\;\log _2 (1 - x).$$

DOI: https://doi.org/10.1515/udt-2016-0007 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 141 - 157
Submitted on: Jul 20, 2012
Accepted on: Apr 10, 2015
Published on: Jan 13, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Ladislav Mišík, Jan Šustek, Bodo Volkmann, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.