Have a personal or library account? Click to login
Pair Correlations and Random Walks on the Integers Cover

Pair Correlations and Random Walks on the Integers

Open Access
|Jan 2017

Abstract

The paper gives conditions for a sequence of fractional parts of real numbers ({anx})n=1$\left( {\{ a_n x\} } \right)_{n = 1}^\infty $ to satisfy a pair correlation estimate. Here x is a fixed nonzero real number and (an)n=1$\left( {a_n } \right)_{n = 1}^\infty $ is a random walk on the integers.

DOI: https://doi.org/10.1515/udt-2016-0008 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 159 - 164
Submitted on: Mar 10, 2015
Accepted on: Mar 22, 2016
Published on: Jan 13, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Radhakrishnan Nair, Entesar Nasr, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.