Have a personal or library account? Click to login
Uniform Distribution of the Sequence of Balancing Numbers Modulo m Cover

Uniform Distribution of the Sequence of Balancing Numbers Modulo m

Open Access
|Jan 2017

References

  1. [1] BEHERA, A.—PANDA, G. K.: On the square roots of triangular numbers, The Fibonacci Quart. 37 (1999), no. 2, 98–105.
  2. [2] NATHANSON, M. B.: Linear recurrences and uniform distribution, Proc. Amer. Math. Soc. 48 (1975), no. 2, 289–291.
  3. [3] NIEDERREITER, H.: Distribution of Fibonacci numbers mod5k, Fibonacci Quart. 10 (1972), no. 4, 373–374.
  4. [4] NIVEN, I.: Uniform distribution of sequences of integers, Trans. Amer. Math. Soc. 98 (1961), 52–61.10.1090/S0002-9947-1961-0120214-8
  5. [5] PANDA, G. K.: Some fascinating properties of balancing numbers, Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Congr. Numer. 194 (2009), 185–189.
  6. [6] PANDA, G. K.—ROUT, S. S.: Periodicity of balancing numbers, Acta Math. Hungar. 143 (2014), no. 2, 274–286.
  7. [7] RAY, P. K.: Some congruences for balancing and Lucas-balancing numbers and their applications, Integers 14 (2014), A8.
  8. [8] WALL, D. D.: Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525–532.10.1080/00029890.1960.11989541
DOI: https://doi.org/10.1515/udt-2016-0002 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 15 - 21
Submitted on: Dec 24, 2014
Accepted on: Jun 26, 2015
Published on: Jan 13, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Prasanta Kumar Ray, Bijan Kumar Patel, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.