Have a personal or library account? Click to login
Distribution of Leading Digits of Numbers Cover

Distribution of Leading Digits of Numbers

By: Yukio Ohkubo and  Oto Strauch  
Open Access
|Jan 2017

Abstract

Applying the theory of distribution functions of sequences we find the relative densities of the first digits also for sequences xn not satisfying Benford’s law. Especially for sequence xn = nr, n = 1, 2, . . . and xn=pnr$x_n = p_n^r $, n = 1, 2, . . ., where pn is the increasing sequence of all primes and r > 0 is an arbitrary real. We also add rate of convergence to such densities.

DOI: https://doi.org/10.1515/udt-2016-0003 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 23 - 45
Submitted on: Sep 23, 2015
Accepted on: Nov 14, 2015
Published on: Jan 13, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Yukio Ohkubo, Oto Strauch, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.