Have a personal or library account? Click to login
Mixture and Non-Mixture Cure Fraction Models Based on Generalized Gompertz Distribution under Bayesian Approach Cover

Mixture and Non-Mixture Cure Fraction Models Based on Generalized Gompertz Distribution under Bayesian Approach

Open Access
|Jan 2017

References

  1. [1] ACHCAR, J. A.-COELHO-BARROS, E.-MAZUCHELI, J.: Cure fraction models using mixture and non-mixture models, Tatra Mt. Math. Publ. 51 (2012), 1-9.
  2. [2] BERKSON, J.-GAGE, R.: Survival curve for cancer patients following treatment, J. Amer. Statist. Assoc. 47 (1952), 501-515.10.1080/01621459.1952.10501187
  3. [3] BOAG, J. W.: Maximum likelihood estimates of the proportion of patients cured by cancer therapy, J. R. Stat. Soc. Ser. B Stat. Methodol. 11 (1949), 15-44.10.1111/j.2517-6161.1949.tb00020.x
  4. [4] CHIEN-LIN, S.-ADAM DING, A.-WANG, W.: Analysis of clustered survival data in the presence of cure with the Gompertz distribution model, 2013, http://www.wseas.us/e-library/conferences/2013/CambridgeUSA/MATHECO/MATHECO-26.pdf
  5. [5] CORBIÈRE, F.-JOLY, P.: A sas macro for parametric and semiparametric mixture cure models, Computer Methods and Programs in Biomedicine 8 (2007), 173-180.10.1016/j.cmpb.2006.10.00817157948
  6. [6] GOHARY, E.-ALSHAMRANI, A.-AL-OTAIBI, A.: The generalized Gompertz distribution, Appl. Math. Model. 37 (2013), 13-24.10.1016/j.apm.2011.05.017
  7. [7] KANNAN, N.-KUNDU, D.-NAIR, P.-TRIPATHI, R. C.: The generalized exponential cure rate model with covariates, J. Appl. Stat. 37 (2010), 1625-1636.10.1080/02664760903117739
  8. [8] KIRKWOOD, J. M.-STRAWDERMAN, M. H.-ERNSTOFF, M. S.-SMITH, T.- -BORDEN, E. C.-BLUM, R. H.: Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the eastern cooperative oncology group trial est 1684, J. Clinical Oncology 14 (1996), 7-17.10.1200/JCO.1996.14.1.78558223
  9. [9] MALLER, R. A.-ZHOU, X.: Survival Analysis with Long-Term Survivors. John Wiley & Sons Ltd., Chichester, 1996.
  10. [10] MARTINEZ, E. Z.-ACHCAR, J. A.-JÁCOMEB, A. A.-SANTOS, S. J.: Mixture and non-mixture cure fraction models based on the generalized modified weibull distribution with an application to gastric cancer data, Computer Methods and Programs in Biomedicine 112 (2012), 343-355.10.1016/j.cmpb.2013.07.02124008248
  11. [11] RAHIMZADEH, M.-KAVEHIE, B.-ZALI, M. R.: Cure models in analyzing long-term survivors, Transl. Gastrointest Cancer 3 (2014), 149-154.
  12. [12] SPIEGELHALTER, D. J.-BEST, N. G.-CARLIN, B. P.-LINDE, V.: A Bayesian measures of model complexity and fit, J. R. Stat. Soc. Ser. B Stat. Methodol. 64 (2002), 583-639.10.1111/1467-9868.00353
  13. [13] YAMAGUCHI, K.: Accelerated failure-time regression model with a regression model for the surviving fraction: an application to the analysis of ‘permanent employ-ment’ in Japan, J. Amer. Statist. Assoc. 87 (1992), 284-292.
  14. [14] YU, B.-TIWARI, R. C.-CRONIN, K. A.-FEUER, E. J.: Cure fraction estimation from the mixture cure models for grouped survival data, Stat.Med. 23 (2004), 1733-1747. 10.1002/sim.177415160405
DOI: https://doi.org/10.1515/tmmp-2016-0025 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 121 - 135
Submitted on: Aug 23, 2016
Published on: Jan 20, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Prafulla Kumar Swain, Gurprit Grover, Komal Goel, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.