Have a personal or library account? Click to login
Cancer Patients’ Survival: Standard Calculation Methods And Some Considerations Regarding Their Interpretation Cover

Cancer Patients’ Survival: Standard Calculation Methods And Some Considerations Regarding Their Interpretation

Open Access
|Feb 2016

References

  1. Hakulinen T, Seppä K, Lambert PC. Choosing the relative survival method for cancer survival estimation. Eur J Cancer 2011; 47: 2202–10.
  2. Primic-Žakelj M, Zadnik V, Žagar T, Zakotnik B. Preživetje bolnikov z rakom v Sloveniji 1991-2005. Ljubljana: Onkološki inštitut Ljubljana, Register raka RS, 2009.
  3. Coleman MP, Quaresma M, Berrino F, Lutz JM, De Angelis R, Capocaccia R. et al. Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol 2008; 9: 730–56.
  4. Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS. et al. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 2015; 14: 977-1010.
  5. De Angelis R, Francisci S, Baili P, Marchesi F, Roazzi P, Belot A. et al. The EUROCARE-4 database on cancer survival in Europe: data standardisation, quality control and methods of statistical analysis. Eur J Cancer 2009; 45: 909–30.
  6. De Angelis R, Sant M, Coleman MP, Francisci S, Baili P, Pierannunzio D. et al. Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE-5—a population-based study. Lancet Oncol 2014; 15: 23-34.
  7. OECD. Health at a glance 2011: OECD indicators. Paris: OECD Publishing, 2011.
  8. OECD. Health at a glance: Europe 2014. Paris: OECD Publishing, 2014.
  9. Howlader N, Noone A, Krapcho M, Grashell J, Neyman N, Altekruse S. et al. SEER cancer statistics review, 1975-2010. Bethseda MD: National Cancer Instiutte, 2013.
  10. Engholm G, Ferlay J, Christensen N, Bray F, Gjerstorff ML, Klint A. et al. NORDCAN--a Nordic tool for cancer information, planning, quality control and research. Acta Oncol 2010; 49: 725–36.
  11. Zadnik V, Primic Žakelj M. SLORA. Ljubljana: Onkološki inštitut Ljubljana, 2010. Available April 25, 2015 from: www.slora.si/en.
  12. Pokhrel A, Hakulinen T. How to interpret the relative survival ratios of cancer patients. Eur J Cancer. 2008; 44(17): 2661–7.
  13. Roche L, Danieli C, Belot A, Grosclaude P, Bouvier AM, Velten M. et al. Cancer net survival on registry data: use of the new unbiased Pohar-Perme estimator and magnitude of the bias with the classical methods. Int J Cancer 2013; 132: 2359–69.
  14. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–81.
  15. Sarfati D, Blakely T, Pearce N. Measuring cancer survival in populations: relative survival vs cancer-specific survival. Int J Epidemiol 2010; 39: 598–610.
  16. Percy C, Stanek E 3rd, Gloeckler L. Accuracy of cancer death certificates and its effect on cancer mortality statistics. Am J Public Health 1981; 71: 242–50.
  17. Primic Zakelj M, Pompe-Kirn V, Šelb-Šemrl J. Can we rely on cancer mortality data? Checking the validity of cervical cancer mortality data for Slovenia. Radiol Oncol 2001; 35: 243–7.
  18. Huang B, Guo J, Charnigo R. Statistical methods for population-based cancer survival in registry data. J Biomet Biostat 2014; 5: e129.
  19. Ederer F, Axtell LM, Cutler SJ. The relative survival rate: a statistical methodology. Natl Cancer Inst Monogr 1961; 6: 101–21.
  20. Žagar T, Zadnik V, Pohar Perme M, Primic Zakelj M. Complete yearly life tables by sex for Slovenia, 1982-2004, and their use in public health. Radiol Oncol 2006; 40: 115–24.
  21. Brenner H, Rachet B. Hybrid analysis for up-to-date long-term survival rates in cancer registries with delayed recording of incident cases. Eur J Cancer 2004; 40: 2494–501.
  22. Dickman PW, Lambert PC, Coviello E, Rutherford MJ. Estimating net survival in population-based cancer studies. Int J Cancer 2013; 133: 519–21.
  23. 23. Brenner H, Gefeller O, Hakulinen T. Period analysis for “up-to-date” cancer survival data: theory, empirical evaluation, computational realisation and applications. Eur J Cancer 2004; 40: 326–35.
  24. Ederer F, Heise H. Instructions to IBM 650 programmers in processing survival computations. Bethesda MD: Technical, and Results Evaluation Section, National Cancer Institut, 1959.
  25. Perme MP, Stare J, Estève J. On estimation in relative survival. Biometrics 2012; 68: 113–20
  26. Dickman P, Coviello E, Hills M. Estimating and modelling relative survival. Available April 20, 2015 from: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.pauldickman.com/survival/strs.pdf">http://www.pauldickman.com/survival/strs.pdf</ext-link>
  27. Surveillance Research Program. SEER*Stat software. National Cancer Institute, 2013. Available April 20 2015 from: seer.cancer.gov/seerstat.
  28. Rachet B, Woods LM, Mitry E, Riga M, Cooper N, Quinn MJ. et al. Cancer survival in England and Wales at the end of the 20th century. Br J Cancer 2008; 99(Suppl 1): S2–10.
  29. Hakulinen T. Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics 1982; 38: 933–42.
  30. Rutherford MJ, Dickman PW, Lambert PC. Comparison of methods for calculating relative survival in population-based studies. Cancer Epidemiol 2012; 36: 16–21.
  31. Corazziari I, Quinn M, Capocaccia R. Standard cancer patient population for age standardising survival ratios. Eur J Cancer 2004; 40: 2307–16.
DOI: https://doi.org/10.1515/sjph-2016-0012 | Journal eISSN: 1854-2476 | Journal ISSN: 0351-0026
Language: English
Page range: 144 - 151
Submitted on: May 18, 2015
Accepted on: Nov 13, 2015
Published on: Feb 11, 2016
Published by: National Institute of Public Health, Slovenia
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2016 Vesna Zadnik, Tina Žagar, Maja Primic Žakelj, published by National Institute of Public Health, Slovenia
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.