References
- Buttar HS, Li T, Ravi N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp Clin Cardiol. 2005; 10(4):229–49.19641674
- Gupta R, Guptha S. Strategies for initial management of hypertension. Indian J Med Res. 2010; 132:531–42. Review.21150005
- Cai, H. and Harrison, D.G., Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000; 87(10): 840–844.1107387810.1161/01.RES.87.10.840
- Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM. Oxidative stress human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 2015; 31(5):631–41.2593648910.1016/j.cjca.2015.02.008
- Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.2326846510.1097/WOX.0b013e3182439613
- Vina J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera MC. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167(1):1-12.2248639310.1111/j.1476-5381.2012.01970.x
- Higashi Y, Sasaki S, Sasaki N, Nakagawa K, Ueda T, Yoshimizu A, Kurisu S, Matsuura H, Kajiyama G, Oshima T. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension. Hypertension. 1999; 33:591–7.993117110.1161/01.HYP.33.1.591
- Endlich PW, Firmes LB, Gonçalves WL, Gouvea SA, Moysés MR, Bissoli NS, Reis AM, Abreu GR. Involvement of the atrial natriuretic peptide in the reduction of arterial pressure induced by swimming but not by running training in hypertensive rats. Peptides. 2011; 32(8):1706–12.2176273910.1016/j.peptides.2011.06.027
- Song YJ, Sawamura M, Ikeda K, Igawa S, Nara Y, Yamori Y. Training in swimming reduces blood pressure and increases muscle glucose transport activity as well as GLUT4 contents in stroke-prone spontaneously hypertensive rats. Appl Human Sci.1998; 17(6):275–80.1005222610.2114/jpa.17.275
- Coimbra R, Sanchez LS, Potenza JM, Rossoni LV, Amaral SL, Michelini LC. Is gender crucial for cardiovascular adjustments induced by exercise training in female spontaneously hypertensive rats? Hypertension. 2008; 52(3):514–21.10.1161/HYPERTENSIONAHA.108.11474418695147
- Kohno H, Furukawa S, Naito H, Minamitani K, Ohmori D, Yamakura F. Contribution of nitric oxide, angiotensin II and superoxide dismutase to exercise-induced attenuation of blood pressure elevation in spontaneously hypertensive rats. Jpn Heart J. 2002; 43(1):25–34.1204188610.1536/jhj.43.25
- Kimura H, Kon N, Furukawa S, Mukaida M, Yamakura F, Matsumoto K, Sone H, Murakami-Murofushi K. Effect of endurance exercise training on oxidative stress in spontaneously hypertensive rats (SHR) after emergence of hypertension. Clin Exp Hypertens. 2010; 32(7):407–15.2082822210.3109/10641961003667930
- Ruzicic R. D., Jakovljevic V., Djordjevic D. Oxidative Stress in Training, Overtraining and Detraining: from Experimental to Applied Research. Ser J Exp Clin Res. 2016; 17(4): 343–348.10.1515/sjecr-2016-0002
- Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2):351–8.10.1016/0003-2697(79)90738-336810
- Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982; 126(1):131–8.718110510.1016/0003-2697(82)90118-X
- Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 1980; 38(1–2):161–70.10.1016/0022-1759(80)90340-36778929
- Auclair C, Voisin E. Nitroblue tetrazolium reduction. In: Greenvvald RA, ed. Handbook of Methods for Oxygen Radical Research. Boca Raton: CRC Press, 1985:123–32.
- Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol Respir Environ Exerc Physiol. 1978; 45(6):927–32.730598
- Stanković M., Radovanović, D. Oxidative stress and physical activity. Sport Logia. 2012; 8:1–11.
- Roque FR, Briones AM, García-Redondo AB, Galán M, Martínez-Revelles S, Avendaño MS, Cachofeiro V, Fernandes T, Vassallo DV, Oliveira EM, Salaices M. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol. 2013; 168(3):686–703.10.1111/j.1476-5381.2012.02224.x22994554
- Powers SK, Radak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. J Physiol. 2016; 594(18):5081–92.10.1113/JP27064626893258
- Araujo LC, de Souza IL, Vasconcelos LH, Brito Ade F, Queiroga FR, Silva AS, da Silva PM, Cavalcante Fde A, da Silva BA. Chronic aerobic swimming exercise promotes functional and morphological changes in rat ileum. Biosci Rep. 2015; 35(5).26424698
- Balcı SS, Pepe H. Effects of gender, endurance training and acute exhaustive exercise on oxidative stress in the heart and skeletal muscle of the rat. Chin J Physiol. 2012; 55(4):236–44.23282164
- Tanaka H, Bassett DR Jr, Howley ET, Thompson DL, Ashraf M, Rawson FL. Swimming training lowers the resting blood pressure in individuals with hypertension. J Hypertens. 1997; 15(6):651–7.921818510.1097/00004872-199715060-00012
- Husain K. Exercise conditioning attenuates the hyper-tensive effects of nitric oxide synthase inhibitor in rat. Mol Cell Biochem. 2002; 231(1–2):129–37.10.1023/A:1014416915643
- Kuru O, Sentürk UK, Koçer G. Effect of exercise training on resistance arteries in rats with chronic NOS inhibition. J Appl Physiol 2009; 107: 896–902.10.1152/japplphysiol.91180.200819498093
- Fregly MJ. Effect of an exercise regimen on development of hypertension in rats. J Appl Physiol 1984; 56:381–387.10.1152/jappl.1984.56.2.381
- Véras-Silva AS, Mattos KC, Gava NS, Brum PC, Negrão CE, Krieger EM. Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am J Physiol. 1997; 273:H2627–31.9435596
- Shepherd RE, Kuehne ML, Kenno KA. Attenuation of blood pressure increases in Dahl salt-sensitive rats by exercise. J Appl Physiol 1982; 52:1608–1613.10.1152/jappl.1982.52.6.1608
- Libonati JR, Sabri A, Xiao C, Macdonnell SM, Renna BF. Exercise training improves systolic function in hypertensive myocardium. J Appl Physiol (1985).2011; 111(6):1637–43.2192124110.1152/japplphysiol.00292.2011
- Endlich PW, Firmes LB, Gonçalves WL, Gouvea SA, Moysés MR, Bissoli NS, Reis AM, Abreu GR. Involvement of the atrial natriuretic peptide in the reduction of arterial pressure induced by swimming but not by running training in hypertensive rats. Peptides. 2011; 32(8):1706–12.2176273910.1016/j.peptides.2011.06.027
- Goessler KF, Martins-Pinge MC, da Cunha NV, Karlen-Amarante M, de Andrade FG, Polito MD. Direct renin inhibitor therapy and swimming training: hemodynamic and cardiac effects in hypertensive and normotensive rats. Clin Exp Hypertens.2015; 37(4):345–52.10.3109/10641963.2014.97256225347778
- Totou NL, Sá RWM, Alzamora AC, Cardoso LM, Becker LK. Cardiopulmonary Reflex and Blood Pressure Response after Swimming and Treadmill Exercisein Hypertensive Rats. JEPonline. 2015; 18(5):86–95.
- Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA, Godwin J, Qizilbash N, Taylor JO, Hennekens CH. Blood pressure, stroke, and coronary heart disease: part 2, short-term reductions in blood pressure: overview of randomized drug trials in their epidemiological context. Lancet. 1990. 335(8693):827–838.10.1016/0140-6736(90)90944-Z1969567
- Zamo FS, Barauna VG, Chiavegatto S, Irigoyen MC, Oliveira EM. The renin-angiotensin system is modulated by swimming training depending on the age of spontaneously hypertensive rats. Life Sci. 2011; 89(3–4):93–9.10.1016/j.lfs.2011.05.00421620872
- Korsager Larsen M, Matchkov VV. Hypertension and physical exercise: The role of oxidative stress. Medicina (Kaunas). 2016; 52(1):19–27.2698749610.1016/j.medici.2016.01.005
- Claudio ER, Almeida SA, Mengal V, Brasil GA, Santuzzi CH, Tiradentes RV, Gouvea SA, Bissoli NS, Santos RL, Abreu GR. Swimming training prevents coronary endothelial dysfunction in ovariectomized spontaneously hypertensive rats. Braz J Med Biol Res. 2017; 50(1):e5495.10.1590/1414-431x2016549528099583
- Cardoso AM, Martins CC, Fiorin Fda S, Schmatz R, Abdalla FH, Gutierres J, Zanini D, Fiorenza AM, Stefanello N, Serres JD, Carvalho F, Castro VP, Mazzanti CM, Royes LF, Belló-Klein A, Goularte JF, Morsch VM, Bagatini MD, Schetinger MR. Physical training prevents oxidative stress in L-NAME-induced hypertension rats. Cell Biochem Funct. 2013; 31(2):136–51.10.1002/cbf.286822961602
- Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, Kawamura M, Chayama K, Yoshizumi M, Nara I. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003; 108(5):530–5.10.1161/01.CIR.0000080893.55729.2812874192
- Kilic-Erkek O, Kilic-Toprak E, Caliskan S, Ekbic Y, Akbudak IH, Kucukatay V, Bor-Kucukatay M. Detraining reverses exercise-induced improvement in blood pressure associated with decrements of oxidative stress in various tissues in spontaneously hypertensive rats. Mol Cell Biochem. 2016;412(1–2):209–19.10.1007/s11010-015-2627-426708216
- Sousa T, Oliveira S, Afonso J, Morato M, Patinha D, Fraga S, Carvalho F, Albino-Teixeira A. Role of H(2) O(2) in hypertension, renin-angiotensin system activation and renal medullary disfunction caused by angiotensin II. Br J Pharmacol. 2012; 166(8):2386–401.10.1111/j.1476-5381.2012.01957.x22452317