Have a personal or library account? Click to login
Application of artificial neural networks to predict the deflections of reinforced concrete beams Cover

Application of artificial neural networks to predict the deflections of reinforced concrete beams

Open Access
|Jul 2016

References

  1. [1] Kuczyński W., Concrete Structures: Continuum theory of reinforced concrete flexural, [in Polish: Konstrukcje betonowe: kontynualna teoria zginania żelbetu], PWN, Warszawa, 1971.
  2. [2] Ryżyński A., Wołowicki W., The proposal for calculating deflection of reinforced concrete beam with regard to its deformed smoothness, [in Polish: Propozycja obliczania ugięć belki żelbetowej z uwzględnieniem niegładkości jej odkształconej], Archiwum Inżynierii Lądowej, 1968, 2, 329–347.
  3. [3] Borcz A., Theory of reinforced concrete structures, [in Polish: Teoria konstrukcji żelbetowych], Vol. II, Wydawnictwo Politechniki Wrocławskiej, Wrocław, 1986.
  4. [4] Polski Komitet Normalizacyjny. Concrete, reinforced concrete and prestressed structures. Calculations and design [in Polish: Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie], PN-B-03264:2002, Warszawa, 2002.
  5. [5] Polski Komitet Normalizacyjny. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, [in Polish: Eurokod 2: Projektowanie konstrukcji z betonu – Część 1-1: Reguły ogólne i reguły dla budynków], PN-EN-1992-1-1:2008, Warszawa 2002.
  6. [6] Kubicki J., Deflections of reinforced concrete beams calculated according to PN-84/B-03264 and Eurocode 2.1 methods in comparison with test results, [in Polish: Ugięcie belek żelbetowych obliczone według PN-84/B-03264 i Eurokodu 2.1 w konfrontacji z wynikami badań doświadczalnych], Prace Instytutu Techniki Budowlanej, 1999, 28, 3–26.
  7. [7] McCulloch W., Pitts W., A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 1943, 5, 115–133.10.1007/BF02478259
  8. [8] Schabowicz K., Neural networks in the NDT identification of the strength of concrete, Archives of Civil Engineering, 2005, 51(3), 371–382.
  9. [9] Schabowicz K., Hoła B., Application of artificial neural networks in predicting earthmoving machinery effectiveness ratios, Archives of Civil and Mechanical Engineering, 2008, 8(4), 73–84.10.1016/S1644-9665(12)60123-X
  10. [10] Ochmański M., Bzówka J., Back analysis of SCL tunnels based on Artificial Neural Network, Architecture, Civil Engineering, Environment – ACEE Journal, 2012, 3, 73–81.
  11. [11] Guzelbey I.H., Cevik A., Gogus M.T., Prediction of rotation capacity of wide flange beams using neural networks, Journal of Constructional Steel Research, 2006, Vol. 62, 950–961.10.1016/j.jcsr.2006.01.003
  12. [12] Pala M., Caglar N., A parametric study for distortional buckling stress on cold-formed steel using a neural network, Journal of Constructional Steel Research, 2007, Vol. 63, 686–691.10.1016/j.jcsr.2006.07.005
  13. [13] Chaudhary S., Pendharkar U., Nagpal A.K., Bending moment prediction for continuous composite beams by neural networks, Advances in Structural Engineering, 2007, Vol. 10, 439–454.10.1260/136943307783239390
  14. [14] Chaudhary S., Pendharkar U., Nagpal A.K., Neural network for bending moment in continuous composite beams considering cracking and time effects in concrete structures, Engineering Structures, 2007, Vol. 29, 269–279.10.1016/j.engstruct.2006.11.009
  15. [15] Tadesse Z., Patel K.A., Chaudhary S., Nagpal A.K., Neural networks for prediction of deflection in composite bridges, Journal of Constructional Steel Research, 2012, Vol. 68(1), 138–149.10.1016/j.jcsr.2011.08.003
  16. [16] Mohammadhassani M., Nezamabadi-Pour H., Jumaat M.Z., Jameel M., Arumugam A.M.S., Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams, Computers and Concrete, 2013, Vol. 11(3), 237–252.10.12989/cac.2013.11.3.237
  17. [17] Tadeusiewicz R., Neural networks, [in Polish: Sieci neuronowe], Akademicka Oficyna Wydawnicza RM, Warszawa, 1993.
  18. [18] Polski Komitet Normalizacyjny. Metals – Tensile testing – Method of test at ambient temperature, [in Polish: Metale – Próba rozciągania – Metoda badań w temperaturze otoczenia]. PN-EN 10002-1:2004, Warszawa, 2004.
  19. [19] Osowski S., Neural networks in terms of algorithmic, [in Polish: Sieci neuronowe w ujęciu algorytmicznym], Wydawnictwo Naukowo-Techniczne, Warszawa, 1996.
DOI: https://doi.org/10.1515/sgem-2016-0017 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 37 - 46
Published on: Jul 15, 2016
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Mateusz Kaczmarek, Agnieszka Szymańska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.