Have a personal or library account? Click to login
Analysis of Pharmaceutical Excipient MCC Avicel PH102 Using Compaction Equations Cover

Analysis of Pharmaceutical Excipient MCC Avicel PH102 Using Compaction Equations

Open Access
|Aug 2016

References

  1. [1] ADAMS, M.J., MCKEOWN, R.: Micromechanical analysis of the pressure-volume relationships for powders under confined uniaxial compression. Powder Technology, 88, 1996, pp. 155-163
  2. [2] ANTIKAINEN, O., YLIRUUSI, J.: Determining the compression behavior of pharmaceutical powders from the force-distance compression profile. International Journal of Pharmacology, 252, 2003, pp. 253-261
  3. [3] AUGSBUTGER, L. L., HOAG, S.W.: Pharmaceutical Dosage Forms: Tablets. New York: Informa Healtcare USA, 2008
  4. [4] CELIK, M.: The Past, Present, and Future of Tabletting Technology. Drug Development and Industrial Pharmacy, 22, 1996, pp. 1-10
  5. [5] CHOWHAN, Z.T., CHOW, Y.P.: Compression behavior of pharmaceutical powders. Journal of Pharmaceutical Sciences, 5, 1980, pp. 139-148
  6. [6] CUNNINGHAM, J.C., SINKA, I.C., ZAVALIANGOS, A.: Analysis of Tablet Compaction. I. Characterization of Mechanical Behavior of Powder and Powder/Tooling Friction. Pharmaceutical Technology, 93, 2004, pp. 2022-2039
  7. [7] DECROSTA, M.T., SCHWARTZ, J.B., WIGENT, R.J., MARSHALL, K.: Thermodynamic analysis of compact formation; compaction, unloading, and ejection I. Desing and development of a compaction calorimeter and mechanical and thermal energy determinations of powder compaction. International Journal of Pharmaceutics, 198, 2000, pp. 113-134
  8. [8] DECROSTA, M.T., SCHWARTZ, J.B., WIGENT, R.J., MARSHALL, K.: Thermodynamic analysis of compact formation; compaction, unloading, and ejection II. Mechanical energy (work) and thermal energy (heat) determinations of compact unloading and ejection. International Journal of Pharmaceutics, 213, 2001, pp. 45-62
  9. [9] DENNY, P.J.: Compaction equations: A comparison of the Heckel and Kawakita equations. Powder Technology, 127, 2002, pp. 162-172
  10. [10] ECKERT, M., PECIAR, P., KROK, A., FEKETE, R.: Application of Compaction Equations for Powdered Pharmaceutical Materials. Scientific Proceedings Faculty of Mechanical Engineering, 23, 2016, pp. 6-11
  11. [11] FREEMAN, R.: Measuring the flow properties of consolidated, conditioned and aerated powders - A comparative study using a powder rheometer and a rotational shear cell. Powder Technology, 174, 2007, pp. 25-33
  12. [12] GABAUDE, C., GUILLOT, M., GAUTIER, J.C.: Effects of true density, compacted mass, compression speed, and punch deformation on the mean yield pressure. Journal of Pharmaceutical Sciences, 88, 1999, pp. 725-730
  13. [13] HAN, L.H., ELLIOT, J.A., BENTHAM, A.C., MILLS, A. AMIDON, G.E.: A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders. International Journal of Solid and Structures, 45, 2008, pp. 3088-3106
  14. [14] KAWAKITA, K.: Some considerations on powder compression equations. Powder Technology, 4, 1971, pp. 61
  15. [15] KIEKENS, F., DEBUNNE, A., VERVAET, C.: Influence of the punch diameter and curvature on the yield pressure of MCC-compacts during Heckel analysis. European Journal of Pharmacology, 22, 2004, pp. 117-126
  16. [16] KLINZING, G.R., ZAVALIANGOS, A., CUNNINGHAM, J., MASCARO, T.: Temperature and density evolution during compaction of a capsule shaped tablet. Computers and Chemical Engineering, 34, 2010, pp. 1082-1091
  17. [17] KROK, A., PECIAR, M. FEKETE, R.: Numerical investigation into the influence of the punch shape on the mechanical behavior of pharmaceutical powders during compaction. Particuology, 16, 2013, pp. 116-131
  18. [18] MAHMOODI, F.: Compression Mechanics of Powders and Granular Materials Probed by Force Distributions and a Micromechanically Based Compaction Equation. Uppsala: Acta Universitatis Upsaliensis, 2012
  19. [19] NICKLASSON, F., ALBETBORN, G.: Analysis of the compression mechanics of pharmaceutical agglomerates of different porosity and composition using the Adams and Kawakita equations. Pharmaceutical Research, 17, 2009, pp. 49-954
  20. [20] ROUÉCHE, E., SERRIS, E., THOMAS, G., CAMBY, L.: Influence of temperature on compaction of an organic powder and the mechanical strength of tablets. Powder Technology, 162, 2006, pp. 138-144
  21. [21] SHANG, C., SINKA, I.C., PAN, J.: Constitutive Model Calibration for Powder Compaction Using Instrumented Die Testing. Society for Experimental Mechanics, 98, 2011, pp. 69-75
  22. [22] SHI, L., CHATTORAJ, S., SUN, C.C.: Reproducibility of flow properties of microcrystalline cellulose - Avicel PH102. Powder Technology, 212, 2011, pp. 253-257
  23. [23] SONNERGAARD, J.M.: A critical evaluation of the Heckel equation. International Journal of Pharmacology, 193, 1999, pp. 63-71
  24. [24] SONNERGAARD, J.M.: Impact of particle density and initial volume on mathematical compression models. European Journal of Pharmaceutical Sciences, 11, 2000, pp. 307-315
  25. [25] SØGAARD, S., BRYDER, M., ALLESØ, M., RANTANEN, J.: Characterization of powder properties using a powder rheometer. Proceedings of Electronic Conference on Pharmaceutical Sciences, 2, 2012
  26. [26] Tablets (compressi). European Pharmacopoeia, Directorate for the Quality of Medicines and Health Care of the Council of Europe, 1, 2008
  27. [27] WASHINGTON, C.: Particle size analysis in pharmaceutics and other industries. CRC Press, 1992
  28. [28] WIACEK, J., MOLENDA, M.: Effect of particle size distribution on micro- and macromechanical response of granular packings under compression. International Journal of Solids and Structures, 51, 2014, pp. 4189-4195
  29. [29] WU, C.Y., RUDDY, O.M., BENTHAM, A.C., HANCOOK, B.C., BEST, S.M.: Modelling the mechanical behavior of pharmaceutical powders during compaction. Powder Technology, 152, 2005, pp. 107-117
  30. [30] YORK, P., PILPEL, N.: The effect of temperature on the mechanical properties of some pharmaceutical powders in relation to tabletting. Journal of Pharmacy and Pharmacology, 24, 1972, pp. 47-56
  31. [31] ZAVALIANGOS, A., GALEN, S., CUNNINGHAM, J.: Temperature Evolution during Compaction of Pharmaceutical Powders. Pharmaceutical Technology, 97, 2008, pp. 3291-3304
  32. [32] GOGA V., HUČKO B.: Phenomenological Material Model of Foam Solids. In Journal of Mechanical Engineering - Strojnícky časopis, Vol. 65, No. 1, 2015, pp. 5-20, ISSN 0039-2472
DOI: https://doi.org/10.1515/scjme-2016-0012 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 65 - 82
Published on: Aug 19, 2016
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Peter Peciar, Maroš Eckert, Roman Fekete, Viliam Hrnčiar, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.