[4] Kita A., Bakowska-Barczak A., Hamouz K., Kulakowska K., Lisinska G. The effect of frying on anthocyanin stability and antioxidant activity of crisps from red- and purple-fleshed potatoes (Solanum tuberosum L.). J. Food Compos. Anal. 2013:32(2):169–175. doi:10.1016/j.jfca.2013.09.00610.1016/j.jfca.2013.09.006
[7] Mahgoub H. A. M., Eisa G. S. A., Youssef M. A. H. Molecular, biochemical and anatomical analysis of some potato (Solanum tuberosum L.) cultivars growing in Egypt. J. Genet. Eng. Biotechnol. 2015:13:39–49. doi:10.1016/j.jgeb.2014.11.00410.1016/j.jgeb.2014.11.004629973630647565
[8] Friedman M. Potato Glycoalkaloids and Metabolites: Roles in the Plant and in the Diet. J. Agric. Food Chem. 2006:54(23):8655–8681. doi:10.1021/jf061471t10.1021/jf061471t17090106
[9] Rady A. M., Soliman S. N., El-Wersh A. Effect of mechanical treatments on creep behavior of potato tubers. Eng. Agric. Environ. Food 2017:10(4):282–291. doi:10.1016/j.eaef.2017.06.00110.1016/j.eaef.2017.06.001
[11] Sanchez Maldonado A. F., Mudge E., Ganzle M. G., Schieber A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 2014:65:27–34. doi:10.1016/j.foodres.2014.06.01810.1016/j.foodres.2014.06.018
[12] Kappachery S., Yu J. W., Baniekal-Hiremath G., Park S. W. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. Comptes Rendus Biologies 2013:336(11–12):530–545. doi:10.1016/j.crvi.2013.09.00610.1016/j.crvi.2013.09.00624296077
[13] Friedman M., Kozukue N., Kim H. J., Choi S. H., Mizuno M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. J. Food Compos. Anal. 2017:62:69–75. doi:10.1016/j.jfca.2017.04.01910.1016/j.jfca.2017.04.019
[14] Abdel-Hafeez H. M., Saleh E. S. E., Tawfeek S. S., Youssef I. M. I., Abdel-Daim A. S. A. Utilization of potato peels and sugar beet pulp with and without enzyme supplementation in broiler chicken diets: effects on performance, serum biochemical indices and carcass traits. J. Anim. Physiol. Anim. Nutr. 2017. doi:10.1111/jpn.1265610.1111/jpn.1265628304103
[15] Huang W., Serra O., Dastmalchi K., Jin L., Yang L., Stark R. E. Comprehensive MS and Solid-State NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four Solanum tuberosum Potato Cultivars. J. Agric. Food Chem. 2017:65(10):2258–2274. doi:10.1021/acs.jafc.6b0517910.1021/acs.jafc.6b0517928215068
[16] Friedman M., Roitman J. N., Kozukue N. Glycoalkaloid and calystegine contents of eight potato cultivars. J. Agric. Food Chem. 2003:51(10):2964–2973. doi:10.1021/jf021146f10.1021/jf021146f12720378
[17] Dai J., Mumper R. J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010:15(10):7313–7352. doi:10.3390/molecules1510731310.3390/molecules15107313625914620966876
[18] Amado I. R., Franco D., Sanchez M., Zapata C., Vazquez J. A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014:165:290–299. doi:10.1016/j.foodchem.2014.05.10310.1016/j.foodchem.2014.05.10325038678
[19] Singh A., Sabally K., Kubow S., Donnelly D. J., Gariepy Y., Orsat V., Raghavan G. S. V. Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules 2011:16(3):2218–2232. doi:10.3390/molecules1603221810.3390/16032218
[20] Proestos C., Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT – Food Sci. Technol. 2008:41(4):652–659. doi:10.1016/j.lwt.2007.04.01310.1016/j.lwt.2007.04.013
[23] Vinatoru M., Toma M., Radu O., Filip P. I., Lazurca D., Mason T. J. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason. Sonochem. 1997:4(2):135–139. doi:10.1016/S1350-4177(97)83207-510.1016/S1350-4177(97)83207-5
[26] Mendiola J. A., Herrero M., Cifuentes A., Ibanez E. Use of compressed fluids for sample preparation: Food applications. J. Chromatogr. A 2007:1152(1–2):234–246. doi:10.1016/j.chroma.2007.02.04610.1016/j.chroma.2007.02.046
[29] Sagnelli D., Hebelstrup K. H., Leroy E., Rolland-Sabate A., Guilois S., Kirkensgaard J. J. K., Mortensen K., Lourdin D., Blennow A. Plant-crafted starches for bioplastics production. Carbohydr. Polym. 2016:152:398–408. doi:10.1016/j.carbpol.2016.07.03910.1016/j.carbpol.2016.07.03927516287
[31] Gomez-Heincke D., Martinez I., Stading M., Gallegos C., Partal P. Improvement of mechanical and water absorption properties of plant protein based bioplastics. Food Hydrocoll. 2017:73:21–29. doi:10.1016/j.foodhyd.2017.06.02210.1016/j.foodhyd.2017.06.022
[32] Gomez-Martinez D., Partal P., Martinez I., Gallegos C. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics. Bioresour. Technol. 2009:100(5):1828–1832. doi:10.1016/j.biortech.2008.10.01610.1016/j.biortech.2008.10.01619022663
[33] Mooney B. P. The second green revolution? Production of plant-based biodegradable plastics. Biochem J 2009:418(2):219–232. doi:10.1042/BJ2008176910.1042/BJ20081769
[36] Friedman M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 2004:1054(1–2):143–155. doi:10.1016/j.chroma.2004.04.04910.1016/j.chroma.2004.04.04915553139
[37] Jarvinen R., Rauhala H., Holopainen U., Kallio H. Differences in suberin content and composition between two varieties of potatoes (Solanum tuberosum) and effect of post-harvest storage to the composition. LWT – Food Sci. Technol. 2011:44(6):1355–1361. doi:10.1016/j.lwt.2011.02.00510.1016/j.lwt.2011.02.005