Have a personal or library account? Click to login

References

  1. [1] Barceloux D. G. Potatoes, Tomatoes, and Solanine Toxicity (Solanum tuberosum L., Solanum lycopersicum L.). Disease-a-Month 2009:55(6):391–402. doi:10.1016/j.disamonth.2009.03.00910.1016/j.disamonth.2009.03.00919446683
  2. [2] Schuler K. Solanum tuberosum (Potato). Encyclopedia of Genetics. Academic Press, 2001:1848–1850. doi:10.1006/rwgn.2001.166910.1006/rwgn.2001.1669
  3. [3] Potato Facts and Figures – International Potato Center. [Online]. Available: https://cipotato.org/potato/facts. [Accessed: 09.08.2017].
  4. [4] Kita A., Bakowska-Barczak A., Hamouz K., Kulakowska K., Lisinska G. The effect of frying on anthocyanin stability and antioxidant activity of crisps from red- and purple-fleshed potatoes (Solanum tuberosum L.). J. Food Compos. Anal. 2013:32(2):169–175. doi:10.1016/j.jfca.2013.09.00610.1016/j.jfca.2013.09.006
  5. [5] Blumberga D., Barisa A., Kubule A., Klavina K., Lauka D., Muizniece I., Blumberga A., Timma L. Biotehonomika. Riga: RTU, 2016.
  6. [6] Glusac J., Isaschar-Ovdat S., Kukavica B., Fishman A. Oil-in-water emulsions stabilized by tyrosinase-crosslinked potato protein. Food Res. Int. 2017:100:407–415. doi:10.1016/j.foodres.2017.07.03410.1016/j.foodres.2017.07.03428873703
  7. [7] Mahgoub H. A. M., Eisa G. S. A., Youssef M. A. H. Molecular, biochemical and anatomical analysis of some potato (Solanum tuberosum L.) cultivars growing in Egypt. J. Genet. Eng. Biotechnol. 2015:13:39–49. doi:10.1016/j.jgeb.2014.11.00410.1016/j.jgeb.2014.11.004629973630647565
  8. [8] Friedman M. Potato Glycoalkaloids and Metabolites: Roles in the Plant and in the Diet. J. Agric. Food Chem. 2006:54(23):8655–8681. doi:10.1021/jf061471t10.1021/jf061471t17090106
  9. [9] Rady A. M., Soliman S. N., El-Wersh A. Effect of mechanical treatments on creep behavior of potato tubers. Eng. Agric. Environ. Food 2017:10(4):282–291. doi:10.1016/j.eaef.2017.06.00110.1016/j.eaef.2017.06.001
  10. [10] Koo B.-S., Kalme S., Yeo S.-H., Lee S.-J., Yoon M.-Y. Molecular cloning and biochemical characterization of alpha- and beta-tubulin from potato plants (Solanum tuberosum L.). Plant Physiol. Biochem. 2009:47(9):761–768. doi:10.1016/j.plaphy.2009.04.00110.1016/j.plaphy.2009.04.00119394244
  11. [11] Sanchez Maldonado A. F., Mudge E., Ganzle M. G., Schieber A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 2014:65:27–34. doi:10.1016/j.foodres.2014.06.01810.1016/j.foodres.2014.06.018
  12. [12] Kappachery S., Yu J. W., Baniekal-Hiremath G., Park S. W. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. Comptes Rendus Biologies 2013:336(11–12):530–545. doi:10.1016/j.crvi.2013.09.00610.1016/j.crvi.2013.09.00624296077
  13. [13] Friedman M., Kozukue N., Kim H. J., Choi S. H., Mizuno M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. J. Food Compos. Anal. 2017:62:69–75. doi:10.1016/j.jfca.2017.04.01910.1016/j.jfca.2017.04.019
  14. [14] Abdel-Hafeez H. M., Saleh E. S. E., Tawfeek S. S., Youssef I. M. I., Abdel-Daim A. S. A. Utilization of potato peels and sugar beet pulp with and without enzyme supplementation in broiler chicken diets: effects on performance, serum biochemical indices and carcass traits. J. Anim. Physiol. Anim. Nutr. 2017. doi:10.1111/jpn.1265610.1111/jpn.1265628304103
  15. [15] Huang W., Serra O., Dastmalchi K., Jin L., Yang L., Stark R. E. Comprehensive MS and Solid-State NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four Solanum tuberosum Potato Cultivars. J. Agric. Food Chem. 2017:65(10):2258–2274. doi:10.1021/acs.jafc.6b0517910.1021/acs.jafc.6b0517928215068
  16. [16] Friedman M., Roitman J. N., Kozukue N. Glycoalkaloid and calystegine contents of eight potato cultivars. J. Agric. Food Chem. 2003:51(10):2964–2973. doi:10.1021/jf021146f10.1021/jf021146f12720378
  17. [17] Dai J., Mumper R. J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010:15(10):7313–7352. doi:10.3390/molecules1510731310.3390/molecules15107313625914620966876
  18. [18] Amado I. R., Franco D., Sanchez M., Zapata C., Vazquez J. A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014:165:290–299. doi:10.1016/j.foodchem.2014.05.10310.1016/j.foodchem.2014.05.10325038678
  19. [19] Singh A., Sabally K., Kubow S., Donnelly D. J., Gariepy Y., Orsat V., Raghavan G. S. V. Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules 2011:16(3):2218–2232. doi:10.3390/molecules1603221810.3390/16032218
  20. [20] Proestos C., Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT – Food Sci. Technol. 2008:41(4):652–659. doi:10.1016/j.lwt.2007.04.01310.1016/j.lwt.2007.04.013
  21. [21] Singh P. P., Saldana M. D. A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011:44(8):2452–2458. doi:10.1016/j.foodres.2011.02.00610.1016/j.foodres.2011.02.006
  22. [22] Ogutu F. O., Mu T. H. Ultrasonic degradation of sweet potato pectin and its antioxidant activity. Ultraso. Sonochem. 2017:38:726–734. doi:10.1016/j.ultsonch.2016.08.01410.1016/j.ultsonch.2016.08.01427617769
  23. [23] Vinatoru M., Toma M., Radu O., Filip P. I., Lazurca D., Mason T. J. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason. Sonochem. 1997:4(2):135–139. doi:10.1016/S1350-4177(97)83207-510.1016/S1350-4177(97)83207-5
  24. [24] Mason T. J., Paniwnyk L., Lorimer J. P. The uses of ultrasound in food technology. Ultrason. Sonochem. 1996:3(3):S253–S260. doi:10.1016/S1350-4177(96)00034-X10.1016/S1350-4177(96)00034-X
  25. [25] Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001:8(3):303–313. doi:10.1016/S1350-4177(01)00071-210.1016/S1350-4177(01)00071-2
  26. [26] Mendiola J. A., Herrero M., Cifuentes A., Ibanez E. Use of compressed fluids for sample preparation: Food applications. J. Chromatogr. A 2007:1152(1–2):234–246. doi:10.1016/j.chroma.2007.02.04610.1016/j.chroma.2007.02.046
  27. [27] Sparr Eskilsson C., Bjorklund E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000:902(1):227–250. doi:10.1016/S0021-9673(00)00921-310.1016/S0021-9673(00)00921-3
  28. [28] Bruder U. Bioplastics and Biocomposites. User’s Guide to Plastic. Munich: Carl Hanser Verlag, 2015. doi:10.3139/9781569905739.00610.3139/9781569905739.006
  29. [29] Sagnelli D., Hebelstrup K. H., Leroy E., Rolland-Sabate A., Guilois S., Kirkensgaard J. J. K., Mortensen K., Lourdin D., Blennow A. Plant-crafted starches for bioplastics production. Carbohydr. Polym. 2016:152:398–408. doi:10.1016/j.carbpol.2016.07.03910.1016/j.carbpol.2016.07.03927516287
  30. [30] Shah A. A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008:26(3):246–265. doi:10.1016/j.biotechadv.2007.12.00510.1016/j.biotechadv.2007.12.00518337047
  31. [31] Gomez-Heincke D., Martinez I., Stading M., Gallegos C., Partal P. Improvement of mechanical and water absorption properties of plant protein based bioplastics. Food Hydrocoll. 2017:73:21–29. doi:10.1016/j.foodhyd.2017.06.02210.1016/j.foodhyd.2017.06.022
  32. [32] Gomez-Martinez D., Partal P., Martinez I., Gallegos C. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics. Bioresour. Technol. 2009:100(5):1828–1832. doi:10.1016/j.biortech.2008.10.01610.1016/j.biortech.2008.10.01619022663
  33. [33] Mooney B. P. The second green revolution? Production of plant-based biodegradable plastics. Biochem J 2009:418(2):219–232. doi:10.1042/BJ2008176910.1042/BJ20081769
  34. [34] Fewell A. M., Roddick J. G. Interactive antifungal activity of the glycoalkaloids α-solanine and α-chaconine. Phytochemistry 1993:33(2):323–328. doi:10.1016/0031-9422(93)85511-O10.1016/0031-9422(93)85511-O
  35. [35] Fewell A. M., Roddick J. G. Potato glycoalkaloid impairment of fungal development. Mycol. Res. 1997:101(5):597–603. doi:10.1017/S095375629600297310.1017/S0953756296002973
  36. [36] Friedman M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 2004:1054(1–2):143–155. doi:10.1016/j.chroma.2004.04.04910.1016/j.chroma.2004.04.04915553139
  37. [37] Jarvinen R., Rauhala H., Holopainen U., Kallio H. Differences in suberin content and composition between two varieties of potatoes (Solanum tuberosum) and effect of post-harvest storage to the composition. LWT – Food Sci. Technol. 2011:44(6):1355–1361. doi:10.1016/j.lwt.2011.02.00510.1016/j.lwt.2011.02.005
  38. [38] Szafranek B. M., Synak E. E. Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry 2006:67:80–90. doi:10.1016/j.phytochem.2005.10.01210.1016/j.phytochem.2005.10.01216310230
  39. [39] Graca J., Pereira H., Suberin Structure in Potato Periderm: Glycerol, Long-Chain Monomers, and Glyceryl and Feruloyl Dimers. Journal of Agricultural and Food Chemistry 2000:48(11):5476–5483. doi:10.1021/jf000612310.1021/jf000612311087505
  40. [40] Outline C. Starch and derivatives as pharmaceutical excipients. Control. Drug Deliv. 2015:21–84.10.1016/B978-1-907568-45-9.00002-0
  41. [41] Lu D. R., Xiao C. M., Xu S. J. Starch-based completely biodegradable polymer materials. Express Polym. Lett. 2009:3(6):366–375. doi:10.3144/expresspolymlett.2009.4610.3144/expresspolymlett.2009.46
  42. [42] Matharu A. S., de Melo E. M., Houghton J. A. Opportunity for high value-added chemicals from food supply chain wastes. Bioresour. Technol. 2016:215:123–130. doi:10.1016/j.biortech.2016.03.03910.1016/j.biortech.2016.03.03926996261
  43. [43] Kubule A., Komisarova T., Blumberga D. Optimization methodology for complete use of bio-resources. Energy Procedia 2017:113:28–34. doi:10.1016/j.egypro.2017.04.00910.1016/j.egypro.2017.04.009
DOI: https://doi.org/10.1515/rtuect-2017-0013 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 18 - 27
Published on: Dec 29, 2017
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Vivita Priedniece, Kriss Spalvins, Kaspars Ivanovs, Jelena Pubule, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.