Have a personal or library account? Click to login
From Big Data to Learning Analytics for a personalized learning experience Cover

From Big Data to Learning Analytics for a personalized learning experience

Open Access
|Dec 2019

Abstract

This article describes Learning Analytics (LA) as a predictive and formative approach that enables the planning of educational scenarios in line with students’ needs and languages in order to set a priori and in progress systems of control and inspection of the following: consistency, relevance and effectiveness of training objectives, curriculum paths, students’ needs and learning outcomes. Thanks to LA, it is possible to understand how students learn. Training courses are designed to include the definition of those learning outcomes that respond effectively to students’ needs in terms of contents, methodologies, tools and teaching resources. The present article aims to describe and discuss, after reviewing the relevant literature, in what way LA represents a valid support not only in designing student-centred training courses, which assess outcomes, but also in carrying out a formative assessment considering the learning experience as a whole. The analysis of some case studies was a good opportunity to reflect and define the bridge existing between the use of LA for assessment purposes and personalized learning paths.

DOI: https://doi.org/10.1515/rem-2018-0009 | Journal eISSN: 2037-0849 | Journal ISSN: 2037-0830
Language: English
Page range: 3 - 9
Published on: Dec 26, 2019
Published by: SIREM (Società Italiana di Ricerca sull’Educazione Mediale)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Anna Dipace, F. Feldia Loperfido, Alessia Scarinci, published by SIREM (Società Italiana di Ricerca sull’Educazione Mediale)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.