Have a personal or library account? Click to login
Carcinogenesis induced by low-dose radiation Cover

References

  1. Ron E. Ionizing radiation and cancer risk: evidence from epidemiology. Pediatr Radiol 2002; 32: 232-7. 42-410.1007/s00247-002-0672-01195670110.1007/s00247-002-0672-0
  2. Rowland JH, Kent EE, Forsythe LP, Loge JH, Hjorth L, Glaser A, et al. Cancer survivorship research in Europe and the United States: where have we been, where are we going, and what can we learn from each other? Cancer 2013; 119(Suppl 11): 2094-10810. 1002/cncr.2806010.1002/cncr.2806023695922
  3. Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, et al. Non-targeted effects of ionising radiation--implications for low dose risk. Mutat Res 2013; 752: 84-98. 10.1016/j.mrrev.2012.12.00123262375
  4. United Nations Scientific Committee on the Effects of Atomic Radiation. Radiation UNSCotEoA. Sources and effects of ionizing radiation, Annex A. UNSCEAR 2008 report; 2008
  5. Veronesi U, Luini A, Del Vecchio M, Greco M, Galimberti V, Merson M, et al. Radiotherapy after breast-preserving surgery in women with localized cancer of the breast. N Engl J Med 1993; 328: 1587-91. 10.1056/NEJM199306033282202.8387637
  6. Radiation UNSCoteoA. Developments since the 2013 UNSCEAR report on the levels and effects of radiation exposure due to the nuclear accident following the great East-Japan earthquake and tsunami. 2016
  7. Ciocca M, Pedroli G, Orecchia R, Guido A, Cattani F, Cambria R, et al. Radiation survey around a Liac mobile electron linear accelerator for intraoperative radiation therapy. J Appl Clin Med Phys 2009; 10: 2950.19458597
  8. Veronesi U, Gatti G, Luini A, Intra M, Orecchia R, Borgen P, et al. Intraoperative radiation therapy for breast cancer: technical notes. BreastJ 2003; 9: 106-12.1260338310.1046/j.1524-4741.2003.09208.x
  9. Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 1988; 35: 95-125.306582610.1016/S0079-6603(08)60611-X
  10. Dianov GL, O’Neill P, Goodhead DT. Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Bioessays 2001; 23: 745-9. 10.1002/bies.110411494323
  11. Lorat Y, Timm S, Jakob B, Taucher-Scholz G, Rube CE. Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiother Oncol 2016; 121: 154-61. 10.1016/j.radonc.2016.08.02827637859
  12. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998; 17: 5497-508. 10.1093/emboj/17.18.54979736627
  13. Ojima M, Ito M, Suzuki K, Kai M. Unstable chromosome aberrations do not accumulate in normal human fibroblast after fractionated x-irradiation. PLoS One 2015; 10: e0116645. 10.1371/journal.pone.011664525723489
  14. Hei TK. Response of biological systems to low doses of ionizing radiation. Health Phys 2016; 110: 281. 10.1097/HP.000000000000045226808883
  15. Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol 2013; 25: 578-85. 10.1016/j.clon.2013.06.007
  16. Jeggo PA. DNA breakage and repair. Adv Genet 1998; 38: 185-218.9677708
  17. Short SC, Bourne S, Martindale C, Woodcock M, Jackson SP. DNA damage responses at low radiation doses. Radiat Res 2005; 164: 292-302.10.1667/RR3421.116137202
  18. Moore S, Stanley FK, Goodarzi AA. The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation--no simple task. DNA Repair 2014; 17: 64-73. 10.1016/j.dnarep.2014.01.01424565812
  19. Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 2008; 36: 5678-94. 10.1093/nar/gkn55018772227
  20. Stucki M, Jackson SP. gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 2006; 5: 534-43. 10.1016/j.dnarep.2006.01.01216531125
  21. Tommasino F, Friedrich T, Jakob B, Meyer B, Durante M, Scholz M. Induction and processing of the radiation-induced gamma-H2AX signal and its link to the underlying pattern of DSB: A combined experimental and modelling study. PLoS One 2015; 10: e0129416. 10.1371/journal.pone.012941626067661
  22. Kegel P, Riballo E, Kuhne M, Jeggo PA, Lobrich M. X-irradiation of cells on glass slides has a dose doubling impact. DNA Repair 2007; 6: 1692-7. 10.1016/j.dnarep.2007.05.013
  23. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A 2003; 100: 5057-62. 10.1073/pnas.083091810012679524
  24. Osipov AN, Pustovalova M, Grekhova A, Eremin P, Vorobyova N, Pulin A, et al. Low doses of X-rays induce prolonged and ATM-independent persistence of gammaH2AX foci in human gingival mesenchymal stem cells. Oncotarget 2015; 6: 27275-87. 10.18632/oncotarget.473926314960
  25. Liang X, So YH, Cui J, Ma K, Xu X, Zhao Y, et al. The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J Radiat Res 2011; 52: 380-6.2143660610.1269/jrr.10121
  26. Brenner DJ, Hall EJ. Computed tomography - an increasing source of radiation exposure. N Engl J Med 2007; 357: 2277-84. 10.1056/NEJMra07214918046031
  27. Xue L, Yu D, Furusawa Y, Cao J, Okayasu R, Fan S. ATM-dependent hyper-radiosensitivity in mammalian cells irradiated by heavy ions. Int J Radiat Oncol Biol Phys 2009; 75: 235-43. 10.1016/j.ijrobp.2009.04.08819695441
  28. Slonina D, Gasinska A, Biesaga B, Janecka A, Kabat D. An association between low-dose hyper-radiosensitivity and the early G2-phase checkpoint in normal fibroblasts of cancer patients. DNA Repair 2016; 39: 41-5. 10.1016/j.dnarep.2015.12.00126725161
  29. Marples B, Collis SJ. Low-dose hyper-radiosensitivity: past, present, and future. Int J Radiat Oncol Biol Phys 2008; 70: 1310-8. 10.1016/j.ijrobp.2007.11.07118374221
  30. Marples B, Joiner MC. The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res 1993; 133: 41-51.843411210.2307/3578255
  31. Short SC, Woodcock M, Marples B, Joiner MC. Effects of cell cycle phase on low-dose hyper-radiosensitivity. Int J Radiat Biol 2003; 79: 99-105.10.1080/095530002100004564612569013
  32. Krueger SA, Wilson GD, Piasentin E, Joiner MC, Marples B. The effects of G2-phase enrichment and checkpoint abrogation on low-dose hyper-radiosensitivity. Int J Radiat Oncol Biol Phys 2010; 77: 1509-17. 10.1016/j.ijrobp.2010.01.02820637979
  33. Schoenherr D, Krueger SA, Martin L, Marignol L, Wilson GD, Marples B. Determining if low dose hyper-radiosensitivity (HRS) can be exploited to provide a therapeutic advantage: a cell line study in four glioblastoma multiforme (GBM) cell lines. Int J Radiat Biol 2013; 89: 1009-16. 10.3109/09553002.2013.82506123859266
  34. Sinclair WK. Cyclic X-ray responses in mammalian cells in vitro. Radiat Res 2012; 178: AV112-24.10.1667/RRAV09.122870963
  35. Xu B, Kim ST, Lim DS, Kastan MB. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 2002; 22: 1049-59.10.1128/MCB.22.4.1049-1059.2002
  36. Marples B, Wouters BG, Joiner MC. An association between the radiation-induced arrest of G2-phase cells and low-dose hyper-radiosensitivity: a plausible underlying mechanism? Radiat Res 2003; 160: 38-45.1281652110.1667/RR3013
  37. Pandita TK, Lieberman HB, Lim DS, Dhar S, Zheng W, Taya Y, et al. Ionizing radiation activates the ATM kinase throughout the cell cycle. Oncogene 2000; 19: 1386-91. 10.1038/sj.onc.120344410723129
  38. Lobrich M, Jeggo PA. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 2007; 7: 861-9. 10.1038/nrc224817943134
  39. Deckbar D, Jeggo PA, Lobrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol 2011; 46: 271-83. 10.3109/10409238.2011.57576421524151
  40. Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S, et al. Chromosome breakage after G2 checkpoint release. J Cell Biol 2007; 176: 749-55. 10.1083/jcb.20061204717353355
  41. Fernet M, Megnin-Chanet F, Hall J, Favaudon V. Control of the G2/M checkpoints after exposure to low doses of ionising radiation: implications for hyper-radiosensitivity. DNA Repair 2010; 9: 48-57. 10.1016/j.dnarep.2009.10.00619926348
  42. Scott D. Chromosomal radiosensitivity, cancer predisposition and response to radiotherapy. Strahlenther Onkol 2000; 176: 229-34.10.1007/s00066005000510847120
  43. Terzoudi GI, Manola KN, Pantelias GE, Iliakis G. Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells. Cancer Res 2005; 65: 11292-6. 10.1158/0008-5472.CAN-05-214816357135
  44. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability induced by ionizing radiation. Radiat Res 1996; 146: 247-58.10.2307/35794548752302
  45. Little JB. Genomic instability and bystander effects: a historical perspective. Oncogene 2003; 22: 6978-87. 10.1038/sj.onc.120698814557801
  46. Kadhim MA, Moore SR, Goodwin EH. Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response. Mutat Res 2004; 568: 21-32. 10.1016/j.mrfmmm.2004.06.04315530536
  47. Weissenborn U, Streffer C. Analysis of structural and numerical chromosomal anomalies at the first, second, and third mitosis after irradiation of one-cell mouse embryos with X-rays or neutrons. Int J Radiat Biol 1988; 54: 381-94.290086010.1080/09553008814551771
  48. Lorimore SA, Wright EG. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Int J Radiat Biol 2003; 79: 15-25.10.1080/095530002100004566412556327
  49. Smith LE, Nagar S, Kim GJ, Morgan WF. Radiation-induced genomic instability: radiation quality and dose response. Health Phys 2003; 85: 23-9.1285246710.1097/00004032-200307000-00006
  50. Kadhim MA, Macdonald DA, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 1992; 355: 738-40. 10.1038/355738a01741061
  51. Lloyd DC, Edwards AA, Leonard A, Deknudt GL, Verschaeve L, Natarajan AT, et al. Chromosomal aberrations in human lymphocytes induced in vitro by very low doses of X-rays. Int J Radiat Biol 1992; 61: 335-43.10.1080/095530092145510211347066
  52. Maxwell CA, Fleisch MC, Costes SV, Erickson AC, Boissiere A, Gupta R, et al. Targeted and nontargeted effects of ionizing radiation that impact genomic instability. Cancer Res 2008; 68: 8304-11. 10.1158/0008-5472.CAN-08-121218922902
  53. Portess DI, Bauer G, Hill MA, O’Neill P. Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis. Cancer Res 2007; 67: 1246-53. 10.1158/0008-5472.CAN-06-298517283161
  54. Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD, et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 2007; 67: 8662-70. 10.1158/0008-5472.CAN-07-129417875706
  55. Bauchinger M, Schmid E, Dresp J. Calculation of the dose-rate dependence of the decentric yield after Co gamma-irradiation of human lymphocytes. Int J Radiat Biol Relat Stud Phys Chem Med 1979; 35: 229-33.10.1080/09553007914550261313377
  56. Iwasaki T, Takashima Y, Suzuki T, Yoshida MA, Hayata I. The dose response of chromosome aberrations in human lymphocytes induced in vitro by very low-dose gamma rays. Radiat Res 2011; 175: 208-13.10.1667/RR2097.121268714
  57. Bakhoum SF, Swanton C. Chromosomal instability, aneuploidy, and cancer. Front Oncol 2014; 4: 161. 10.3389/fonc.2014.0016124995162
  58. Cho YH, Kim SY, Woo HD, Kim YJ, Ha SW, Chung HW. Delayed numerical chromosome aberrations in human fibroblasts by low dose of radiation. Int J Environ Res Public Health 2015; 12: 15162-72. 10.3390/ijer-ph12121497926633443
  59. Lucas JN, Tenjin T, Straume T, Pinkel D, Moore D, 2nd, Litt M, et al. Rapid human chromosome aberration analysis using fluorescence in situ hybridization. Int J Radiat Biol 1989;56: 35-44.10.1080/095530089145511612569008
  60. Dahle J, Kvam E. Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation. Cancer Res 2003; 63: 1464-9.12670891
  61. Cresti N, Lee J, Rourke E, Televantou D, Jamieson D, Verrill M, et al. Genetic variants in the HER2 gene: Influence on HER2 overexpression and loss of heterozygosity in breast cancer. Eur J Cancer 2016; 55: 27-37. 10.1016/j.ejca.2015.10.06626773371
  62. Umebayashi Y, Honma M, Suzuki M, Suzuki H, Shimazu T, Ishioka N, et al. Mutation induction in cultured human cells after low-dose and low-doserate gamma-ray irradiation: detection by LOH analysis. J Radiat Res 2007; 48: 7-11.10.1269/jrr.06054
  63. Prise KM, Folkard M, Michael BD. A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosimetry 2003; 104: 347-55.10.1093/oxfordjournals.rpd.a00619814579891
  64. Sowa Resat MB, Morgan WF. Radiation-induced genomic instability: a role for secreted soluble factors in communicating the radiation response to non-irradiated cells. J Cell Biochem 2004; 92: 1013-9. 10.1002/jcb.2014915258922
  65. Azzam EI, de Toledo SM, Little JB. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene 2003; 22: 7050-7. 10.1038/sj.onc.120696114557810
  66. Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 1992; 52: 6394-6.1423287
  67. Ojima M, Ban N, Kai M. DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects. Radiat Res 2008; 170: 365-71. 10.1667/RR1255.118763860
  68. Huo L, Nagasawa H, Little JB. HPRT mutants induced in bystander cells by very low fluences of alpha particles result primarily from point mutations. Radiat Res 2001; 156: 521-5.1160406510.1667/0033-7587(2001)156[0521:HMIIBC]2.0.CO;2
  69. Narayanan PK, Goodwin EH, Lehnert BE. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 1997; 57: 3963-71.9307280
  70. Oller AR, Thilly WG. Mutational spectra in human B-cells. Spontaneous, oxygen and hydrogen peroxide-induced mutations at the hprt gene. J Mol Biol 1992; 228: 813-26.1469715
  71. Seymour CB, Mothersill C. Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve. Radiat Res 2000; 153: 508-11.1079027010.1667/0033-7587(2000)153[0508:RCOBAT]2.0.CO;2
  72. Watson GE, Lorimore SA, Macdonald DA, Wright EG. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res 2000; 60: 5608-11.11059747
  73. Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V, et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci U S A 2008; 105: 12445-50. 10.1073/pnas.080418610518711141
  74. Chai Y, Hei TK. Radiation induced bystander effect in vivo. Acta Med Nagasaki 2008; 53: S65-S9.
DOI: https://doi.org/10.1515/raon-2017-0044 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 369 - 377
Submitted on: Jul 4, 2017
|
Accepted on: Sep 25, 2017
|
Published on: Nov 1, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Igor Piotrowski, Katarzyna Kulcenty, Wiktoria Maria Suchorska, Agnieszka Skrobała, Małgorzata Skórska, Marta Kruszyna-Mochalska, Anna Kowalik, Weronika Jackowiak, Julian Malicki, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.