References
- Liu, J, Xing, F, Dong, B, Ma, H, Pan, D. Study on surface permeability of concrete under immersion. Materials (Basel) 2014;7:876–86. https://doi.org/10.3390/ma7020876.
- Vicente, C, Castela, AS, Neves, R, Montemor, MF. Assessment of the influence of concrete modification in the water uptake/evaporation kinetics by electrochemical impedance spectroscopy. Electrochim Acta 2017;247:50–62. https://doi.org/10.1016/j.electacta.2017.06.168.
- Dong, BQ, Qiu, QW, Xiang, JQ, Huang, CJ, Xing, F, Han, NX, et al.. Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials. Constr Build Mater 2014;54:558–65. https://doi.org/10.1016/j.conbuildmat.2013.12.100.
- Dong, B, Qiu, Q, Gu, Z, Xiang, J, Huang, C, Fang, Y, et al.. Characterization of carbonation behavior of fly ash blended cement materials by the electrochemical impedance spectroscopy method. Cem Concr Compos 2016;65:118–27. https://doi.org/10.1016/j.cemconcomp.2015.10.006.
- Dong, B, Qiu, Q, Xiang, J, Huang, C, Xing, F, Han, N. Study on the carbonation behavior of cement mortar by electrochemical impedance spectroscopy. Materials (Basel) 2014;7:218–31. https://doi.org/10.3390/ma7010218.
- Dong, B, Qiu, Q, Xiang, J, Huang, C, Sun, H, Xing, F, et al.. Electrochemical impedance interpretation of the carbonation behavior for fly ash-slag-cement materials. Constr Build Mater 2015;93:933–42. https://doi.org/10.1016/j.conbuildmat.2015.05.066.
- Qiu, Q, Gu, Z, Xiang, J, Huang, C, Hong, S, Xing, F, et al.. Influence of slag incorporation on electrochemical behavior of carbonated cement. Constr Build Mater 2017;147:661–8. https://doi.org/10.1016/j.conbuildmat.2017.05.008.
- Yu, D, Guan, B, He, R, Xiong, R, Liu, Z. Sulfate attack of Portland cement concrete under dynamic flexural loading: a coupling function. Constr Build Mater 2016;115:478–85. https://doi.org/10.1016/j.conbuildmat.2016.02.052.
- Gong, J, Cao, J, Wang, YF. Effects of sulfate attack and dry-wet circulation on creep of fly-ash slag concrete. Constr Build Mater 2016;125:12–20. https://doi.org/10.1016/j.conbuildmat.2016.08.023.
- Tang, SW, Yao, Y, Andrade, C, Li, ZJ. Recent durability studies on concrete structure. Cem Concr Res 2015;78:143–54. https://doi.org/10.1016/j.cemconres.2015.05.021.
- Bernal, J, Fenaux, M, Moragues, A, Reyes, E, Gálvez, JC. Study of chloride penetration in concretes exposed to high-mountain weather conditions with presence of deicing salts. Constr Build Mater 2016;127:971–83. https://doi.org/10.1016/j.conbuildmat.2016.09.148.
- Berrocal, CG, Lundgren, K, Löfgren, I. Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: state of the art. Cem Concr Res 2016;80:69–85.
- Liu, J, Qiu, Q, Chen, X, Xing, F, Han, N, He, Y, et al.. Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete. Cem Concr Res 2017;95:217–25. https://doi.org/10.1016/j.cemconres.2017.02.032.
- Liu, JC, Wang, TJ, Sung, LC, Kao, PF, Yang, TY, Hao, WR, et al.. Influenza vaccination reduces hemorrhagic stroke risk in patients with atrial fibrillation: a population-based cohort study. Int J Cardiol 2017;232:315–23. https://doi.org/10.1016/j.ijcard.2016.12.074.
- Montemor, MF, Simões, AMP, Ferreira, MGS. Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem Concr Compos 2003;25:491–502.
- Tadayon, MH, Shekarchi, M, Tadayon, M. Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone. Constr Build Mater 2016;123:611–6. https://doi.org/10.1016/j.conbuildmat.2016.07.074.
- Liu, J, Ou, G, Qiu, Q, Xing, F, Tang, K, Zeng, J. Atmospheric chloride deposition in field concrete at coastal region. Constr Build Mater 2018;190:1015–22. https://doi.org/10.1016/j.conbuildmat.2018.09.094.
- Fitzgerald, JW. Marine aerosols: a review. Atmos Environ Part A, Gen Top 1991;25:533–45. https://doi.org/10.1016/0960-1686(91)90050-h.
- Houska, C, Houska, C. Deicing salt – recognizing the corrosion threat, TMR consulting. Pittsburgh, PA USA; 1990:1990 p.
- Liu, J, Ou, G, Qiu, Q, Chen, X, Hong, J, Xing, F. Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition. Constr Build Mater 2017;146:493–501. https://doi.org/10.1016/j.conbuildmat.2017.04.018.
- Pontes, J, Bogas, JA, Real, S, Silva, A. The rapid chloride migration test in assessing the chloride penetration resistance of normal and lightweight concrete. Appl Sci 2021;11:7251. https://doi.org/10.3390/app11167251.
- Ann, KY, Ahn, JH, Ryou, JS. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Constr Build Mater 2009;23:239–45. https://doi.org/10.1016/j.conbuildmat.2007.12.014.
- Tipu, RK, Panchal, VR, Pandya, KS. Multi-objective optimized high-strength concrete mix design using a hybrid machine learning and metaheuristic algorithm. Asian J Civ Eng 2023;24:849–67. https://doi.org/10.1007/s42107-022-00535-8.
- Kumar Tipu, R, Batra, V, Suman, PKS, Panchal, VR. Shear capacity prediction for FRCM-strengthened RC beams using hybrid ReLU-Activated BPNN model. Structures 2023;58:105432. https://doi.org/10.1016/j.istruc.2023.105432.
- Tipu, RK, Panchal, VR, Pandya, KS. Enhancing chloride concentration prediction in marine concrete using conjugate gradient-optimized backpropagation neural network. Asian J Civ Eng 2024;25:637–56. https://doi.org/10.1007/s42107-023-00801-3.
- Tipu, RK, Batra, V, Suman, PVR, Pandya, KS. Predictive modelling of surface chloride concentration in marine concrete structures: a comparative analysis of machine learning approaches. Asian J Civ Eng 2024;25:1443–65. https://doi.org/10.1007/s42107-023-00854-4.
- Marks, M, Jóźwiak-NiedzWiedzka, D, Glinicki, MA. Automatic categorization of chloride migration into concrete modified with CFBC ash. Comput Concr 2012;9:375–87.
- Hodhod, OA, Ahmed, HI. Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete. HBRC J 2013;9:15–21. https://doi.org/10.1016/j.hbrcj.2013.04.001.
- Yao, L, Ren, L, Gong, G. Evaluation of chloride diffusion in concrete using PSO-BP and BP neural network. IOP Conf Ser Earth Environ Sci 2021;687:012037. https://doi.org/10.1088/1755-1315/687/1/012037.
- Delgado, JMPQ, Silva, FAN, Azevedo, AC, Silva, DF, Campello, RLB, Santos, RL. Artificial neural networks to assess the useful life of reinforced concrete elements deteriorated by accelerated chloride tests. J Build Eng 2020;31:101445. https://doi.org/10.1016/j.jobe.2020.101445.
- Tariq, A, Uzun, B, Akpınar, M, Yaylı, MÖ, Deliktaş, B. Size dependent dynamics of a bi-directional functionally graded nanobeam via machine learning methods. Adv Nano Res 2025;18:33–52.
- Lourenço, R, Tariq, A, Georgieva, P, Andrade-Campos, A, Deliktaş, B. On the use of physics-based constraints and validation KPI for data-driven elastoplastic constitutive modelling. Comput Methods Appl Mech Eng 2025;437:117743. https://doi.org/10.1016/j.cma.2025.117743.
- Safaeian Hamzehkolaei, N, Ghavaminejad, S, Barkhordari, MS. Predictive model of bond strength in reinforced concrete structures: a hybrid metaheuristic-optimized neural network approach. Int J Eng Trans B Appl. 2025;38:1190–212.
- Tariq, A, Deliktaş, B. An inverse parameter identification in finite element problems using machine learning-aided optimization framework. Exp Mech 2025;65:325–49. https://doi.org/10.1007/s11340-024-01136-z.
- Barkhordari, MS, Zhou, N, Li, K, Qi, C. Interpretable machine learning for predicting heavy metal removal efficiency in electrokinetic soil remediation. J Environ Chem Eng 2024;12:114330. https://doi.org/10.1016/j.jece.2024.114330.
- Kuosa, H. Concrete durability field testing –– Field and laboratory results 2007–2010 in DuraInt-project. VTT Research Report VTT-R-00482-11; 2011:96 p.
- Choi, YC, Park, B, Pang, GS, Lee, KM, Choi, S. Modelling of chloride diffusivity in concrete considering effect of aggregates. Constr Build Mater 2017;136:81–7. https://doi.org/10.1016/j.conbuildmat.2017.01.041.
- Sell Junior, FK, Wally, GB, Teixeira, FR, Magalhães, FC. Experimental assessment of accelerated test methods for determining chloride diffusion coefficient in concrete. Rev IBRACON Estruturas e Mater 2021;14:e14407. https://doi.org/10.1590/s1983-41952021000400007.
- Elfmarkova, V, Spiesz, P, Brouwers, HJH. Determination of the chloride diffusion coefficient in blended cement mortars. Cem Concr Res 2015;78:190–9. https://doi.org/10.1016/j.cemconres.2015.06.014.
- Audenaert, K, Yuan, Q, De Schutter, G. On the time dependency of the chloride migration coefficient in concrete. Constr Build Mater 2010;24:396–402. https://doi.org/10.1016/j.conbuildmat.2009.07.003.
- Park, JI, Lee, KM, Kwon, SO, Bae, SH, Jung, SH, Yoo, SW. Diffusion decay coefficient for chloride ions of concrete containing mineral admixtures. Adv Mater Sci Eng 2016;2016:1–11. https://doi.org/10.1155/2016/2042918.
- Marks, M, Glinicki, MA, Gibas, K. Prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning. Materials (Basel) 2015;8:8714–27. https://doi.org/10.3390/ma8125483.
- Anas, M, Khan, M, Bilal, H, Jadoon, S, Khan, MN. Fiber reinforced concrete: a review †. Eng Proc 2022;22:3. https://doi.org/10.3390/engproc2022022003.
- Alyami, M, Nassar, RUD, Khan, M, Hammad, AW, Alabduljabbar, H, Nawaz, R, et al.. Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models. Case Stud Constr Mater 2024;20:e02901. https://doi.org/10.1016/j.cscm.2024.e02901.
- Alyami, M, Khan, M, Fawad, M, Nawaz, R, Hammad, AWA, Najeh, T, et al.. Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms. Case Stud Constr Mater 2024;20:e02728. https://doi.org/10.1016/j.cscm.2023.e02728.
- Alyousef, R, Rehman, MF, Khan, M, Fawad, M, Khan, AU, Hassan, AM, et al.. Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures. Case Stud Constr Mater 2023;19:e02418. https://doi.org/10.1016/j.cscm.2023.e02418.
- Khan, M, Khan, A, Khan, AU, Shakeel, M, Khan, K, Alabduljabbar, H, et al.. Intelligent prediction modeling for flexural capacity of FRP-strengthened reinforced concrete beams using machine learning algorithms. Heliyon 2024;10:e23375. https://doi.org/10.1016/j.heliyon.2023.e23375.
- Alabduljabbar, H, Khan, M, Awan, HH, Eldin, SM, Alyousef, R, Mohamed, AM. Predicting ultra-high-performance concrete compressive strength using gene expression programming method. Case Stud Constr Mater 2023;18:e02074. https://doi.org/10.1016/j.cscm.2023.e02074.
- Yang, Q, Wu, Y, Zhi, P, Zhu, P. Effect of micro-cracks on chloride ion diffusion in concrete based on stochastic aggregate approach. Buildings 2024;14:1353. https://doi.org/10.3390/buildings14051353.
- Tariq, A, Polat, A, Deliktaş, B. Boosting machine learning algorithms for predicting the macroscopic material behavior of continuous fiber reinforced composite. J Reinf Plast Compos. 2024. https://doi.org/10.1177/07316844241292694.
- Polat, A, Tariq, A, Okay, F, Deliktaş, B. Investigation of the critical buckling load of a column with linearly varying moment of inertia using analytical, numerical, and hybrid machine learning approaches. J Strain Anal Eng Des 2025;60:612–31. https://doi.org/10.1177/03093247251337987.
- Tariq, A, Uzun, B, Deliktaş, B, Yaylı, MÖ. An investigation on ensemble machine learning algorithms for nonlinear stability response of a two-dimensional FG nanobeam. J Braz Soc Mech Sci Eng 2024;46:556. https://doi.org/10.1007/s40430-024-05093-5.
- Mohammed, A, Burhan, L, Ghafor, K, Sarwar, W, Mahmood, W. Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers. Neural Comput Appl 2021;33:7851–73. https://doi.org/10.1007/s00521-020-05525-y.
- Khan, M, Nassar, RUD, Khan, AU, Houda, M, El Hachem, C, Rasheed, M, et al.. Optimizing durability assessment: machine learning models for depth of wear of environmentally-friendly concrete. Results Eng 2023;20:101625. https://doi.org/10.1016/j.rineng.2023.101625.
- Shakr, PN, Mohammed, A, Hamad, SM, Kurda, R. Electrical resistivity-compressive strength predictions for normal strength concrete with waste steel slag as a coarse aggregate replacement using various analytical models. Constr Build Mater 2022;327:127008. https://doi.org/10.1016/j.conbuildmat.2022.127008.