Have a personal or library account? Click to login
Advanced hybrid machine learning models for estimating chloride penetration resistance of concrete structures for durability assessment: optimization and hyperparameter tuning Cover

Advanced hybrid machine learning models for estimating chloride penetration resistance of concrete structures for durability assessment: optimization and hyperparameter tuning

Open Access
|Dec 2025

References

  1. Liu, J, Xing, F, Dong, B, Ma, H, Pan, D. Study on surface permeability of concrete under immersion. Materials (Basel) 2014;7:876–86. https://doi.org/10.3390/ma7020876.
  2. Vicente, C, Castela, AS, Neves, R, Montemor, MF. Assessment of the influence of concrete modification in the water uptake/evaporation kinetics by electrochemical impedance spectroscopy. Electrochim Acta 2017;247:50–62. https://doi.org/10.1016/j.electacta.2017.06.168.
  3. Dong, BQ, Qiu, QW, Xiang, JQ, Huang, CJ, Xing, F, Han, NX, et al.. Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials. Constr Build Mater 2014;54:558–65. https://doi.org/10.1016/j.conbuildmat.2013.12.100.
  4. Dong, B, Qiu, Q, Gu, Z, Xiang, J, Huang, C, Fang, Y, et al.. Characterization of carbonation behavior of fly ash blended cement materials by the electrochemical impedance spectroscopy method. Cem Concr Compos 2016;65:118–27. https://doi.org/10.1016/j.cemconcomp.2015.10.006.
  5. Dong, B, Qiu, Q, Xiang, J, Huang, C, Xing, F, Han, N. Study on the carbonation behavior of cement mortar by electrochemical impedance spectroscopy. Materials (Basel) 2014;7:218–31. https://doi.org/10.3390/ma7010218.
  6. Dong, B, Qiu, Q, Xiang, J, Huang, C, Sun, H, Xing, F, et al.. Electrochemical impedance interpretation of the carbonation behavior for fly ash-slag-cement materials. Constr Build Mater 2015;93:933–42. https://doi.org/10.1016/j.conbuildmat.2015.05.066.
  7. Qiu, Q, Gu, Z, Xiang, J, Huang, C, Hong, S, Xing, F, et al.. Influence of slag incorporation on electrochemical behavior of carbonated cement. Constr Build Mater 2017;147:661–8. https://doi.org/10.1016/j.conbuildmat.2017.05.008.
  8. Yu, D, Guan, B, He, R, Xiong, R, Liu, Z. Sulfate attack of Portland cement concrete under dynamic flexural loading: a coupling function. Constr Build Mater 2016;115:478–85. https://doi.org/10.1016/j.conbuildmat.2016.02.052.
  9. Gong, J, Cao, J, Wang, YF. Effects of sulfate attack and dry-wet circulation on creep of fly-ash slag concrete. Constr Build Mater 2016;125:12–20. https://doi.org/10.1016/j.conbuildmat.2016.08.023.
  10. Tang, SW, Yao, Y, Andrade, C, Li, ZJ. Recent durability studies on concrete structure. Cem Concr Res 2015;78:143–54. https://doi.org/10.1016/j.cemconres.2015.05.021.
  11. Bernal, J, Fenaux, M, Moragues, A, Reyes, E, Gálvez, JC. Study of chloride penetration in concretes exposed to high-mountain weather conditions with presence of deicing salts. Constr Build Mater 2016;127:971–83. https://doi.org/10.1016/j.conbuildmat.2016.09.148.
  12. Berrocal, CG, Lundgren, K, Löfgren, I. Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: state of the art. Cem Concr Res 2016;80:69–85.
  13. Liu, J, Qiu, Q, Chen, X, Xing, F, Han, N, He, Y, et al.. Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete. Cem Concr Res 2017;95:217–25. https://doi.org/10.1016/j.cemconres.2017.02.032.
  14. Liu, JC, Wang, TJ, Sung, LC, Kao, PF, Yang, TY, Hao, WR, et al.. Influenza vaccination reduces hemorrhagic stroke risk in patients with atrial fibrillation: a population-based cohort study. Int J Cardiol 2017;232:315–23. https://doi.org/10.1016/j.ijcard.2016.12.074.
  15. Montemor, MF, Simões, AMP, Ferreira, MGS. Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem Concr Compos 2003;25:491–502.
  16. Tadayon, MH, Shekarchi, M, Tadayon, M. Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone. Constr Build Mater 2016;123:611–6. https://doi.org/10.1016/j.conbuildmat.2016.07.074.
  17. Liu, J, Ou, G, Qiu, Q, Xing, F, Tang, K, Zeng, J. Atmospheric chloride deposition in field concrete at coastal region. Constr Build Mater 2018;190:1015–22. https://doi.org/10.1016/j.conbuildmat.2018.09.094.
  18. Fitzgerald, JW. Marine aerosols: a review. Atmos Environ Part A, Gen Top 1991;25:533–45. https://doi.org/10.1016/0960-1686(91)90050-h.
  19. Houska, C, Houska, C. Deicing salt – recognizing the corrosion threat, TMR consulting. Pittsburgh, PA USA; 1990:1990 p.
  20. Liu, J, Ou, G, Qiu, Q, Chen, X, Hong, J, Xing, F. Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition. Constr Build Mater 2017;146:493–501. https://doi.org/10.1016/j.conbuildmat.2017.04.018.
  21. Pontes, J, Bogas, JA, Real, S, Silva, A. The rapid chloride migration test in assessing the chloride penetration resistance of normal and lightweight concrete. Appl Sci 2021;11:7251. https://doi.org/10.3390/app11167251.
  22. Ann, KY, Ahn, JH, Ryou, JS. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Constr Build Mater 2009;23:239–45. https://doi.org/10.1016/j.conbuildmat.2007.12.014.
  23. Tipu, RK, Panchal, VR, Pandya, KS. Multi-objective optimized high-strength concrete mix design using a hybrid machine learning and metaheuristic algorithm. Asian J Civ Eng 2023;24:849–67. https://doi.org/10.1007/s42107-022-00535-8.
  24. Kumar Tipu, R, Batra, V, Suman, PKS, Panchal, VR. Shear capacity prediction for FRCM-strengthened RC beams using hybrid ReLU-Activated BPNN model. Structures 2023;58:105432. https://doi.org/10.1016/j.istruc.2023.105432.
  25. Tipu, RK, Panchal, VR, Pandya, KS. Enhancing chloride concentration prediction in marine concrete using conjugate gradient-optimized backpropagation neural network. Asian J Civ Eng 2024;25:637–56. https://doi.org/10.1007/s42107-023-00801-3.
  26. Tipu, RK, Batra, V, Suman, PVR, Pandya, KS. Predictive modelling of surface chloride concentration in marine concrete structures: a comparative analysis of machine learning approaches. Asian J Civ Eng 2024;25:1443–65. https://doi.org/10.1007/s42107-023-00854-4.
  27. Marks, M, Jóźwiak-NiedzWiedzka, D, Glinicki, MA. Automatic categorization of chloride migration into concrete modified with CFBC ash. Comput Concr 2012;9:375–87.
  28. Hodhod, OA, Ahmed, HI. Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete. HBRC J 2013;9:15–21. https://doi.org/10.1016/j.hbrcj.2013.04.001.
  29. Yao, L, Ren, L, Gong, G. Evaluation of chloride diffusion in concrete using PSO-BP and BP neural network. IOP Conf Ser Earth Environ Sci 2021;687:012037. https://doi.org/10.1088/1755-1315/687/1/012037.
  30. Delgado, JMPQ, Silva, FAN, Azevedo, AC, Silva, DF, Campello, RLB, Santos, RL. Artificial neural networks to assess the useful life of reinforced concrete elements deteriorated by accelerated chloride tests. J Build Eng 2020;31:101445. https://doi.org/10.1016/j.jobe.2020.101445.
  31. Tariq, A, Uzun, B, Akpınar, M, Yaylı, MÖ, Deliktaş, B. Size dependent dynamics of a bi-directional functionally graded nanobeam via machine learning methods. Adv Nano Res 2025;18:33–52.
  32. Lourenço, R, Tariq, A, Georgieva, P, Andrade-Campos, A, Deliktaş, B. On the use of physics-based constraints and validation KPI for data-driven elastoplastic constitutive modelling. Comput Methods Appl Mech Eng 2025;437:117743. https://doi.org/10.1016/j.cma.2025.117743.
  33. Safaeian Hamzehkolaei, N, Ghavaminejad, S, Barkhordari, MS. Predictive model of bond strength in reinforced concrete structures: a hybrid metaheuristic-optimized neural network approach. Int J Eng Trans B Appl. 2025;38:1190–212.
  34. Tariq, A, Deliktaş, B. An inverse parameter identification in finite element problems using machine learning-aided optimization framework. Exp Mech 2025;65:325–49. https://doi.org/10.1007/s11340-024-01136-z.
  35. Barkhordari, MS, Zhou, N, Li, K, Qi, C. Interpretable machine learning for predicting heavy metal removal efficiency in electrokinetic soil remediation. J Environ Chem Eng 2024;12:114330. https://doi.org/10.1016/j.jece.2024.114330.
  36. Kuosa, H. Concrete durability field testing –– Field and laboratory results 2007–2010 in DuraInt-project. VTT Research Report VTT-R-00482-11; 2011:96 p.
  37. Choi, YC, Park, B, Pang, GS, Lee, KM, Choi, S. Modelling of chloride diffusivity in concrete considering effect of aggregates. Constr Build Mater 2017;136:81–7. https://doi.org/10.1016/j.conbuildmat.2017.01.041.
  38. Sell Junior, FK, Wally, GB, Teixeira, FR, Magalhães, FC. Experimental assessment of accelerated test methods for determining chloride diffusion coefficient in concrete. Rev IBRACON Estruturas e Mater 2021;14:e14407. https://doi.org/10.1590/s1983-41952021000400007.
  39. Elfmarkova, V, Spiesz, P, Brouwers, HJH. Determination of the chloride diffusion coefficient in blended cement mortars. Cem Concr Res 2015;78:190–9. https://doi.org/10.1016/j.cemconres.2015.06.014.
  40. Audenaert, K, Yuan, Q, De Schutter, G. On the time dependency of the chloride migration coefficient in concrete. Constr Build Mater 2010;24:396–402. https://doi.org/10.1016/j.conbuildmat.2009.07.003.
  41. Park, JI, Lee, KM, Kwon, SO, Bae, SH, Jung, SH, Yoo, SW. Diffusion decay coefficient for chloride ions of concrete containing mineral admixtures. Adv Mater Sci Eng 2016;2016:1–11. https://doi.org/10.1155/2016/2042918.
  42. Marks, M, Glinicki, MA, Gibas, K. Prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning. Materials (Basel) 2015;8:8714–27. https://doi.org/10.3390/ma8125483.
  43. Anas, M, Khan, M, Bilal, H, Jadoon, S, Khan, MN. Fiber reinforced concrete: a review †. Eng Proc 2022;22:3. https://doi.org/10.3390/engproc2022022003.
  44. Alyami, M, Nassar, RUD, Khan, M, Hammad, AW, Alabduljabbar, H, Nawaz, R, et al.. Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models. Case Stud Constr Mater 2024;20:e02901. https://doi.org/10.1016/j.cscm.2024.e02901.
  45. Alyami, M, Khan, M, Fawad, M, Nawaz, R, Hammad, AWA, Najeh, T, et al.. Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms. Case Stud Constr Mater 2024;20:e02728. https://doi.org/10.1016/j.cscm.2023.e02728.
  46. Alyousef, R, Rehman, MF, Khan, M, Fawad, M, Khan, AU, Hassan, AM, et al.. Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures. Case Stud Constr Mater 2023;19:e02418. https://doi.org/10.1016/j.cscm.2023.e02418.
  47. Khan, M, Khan, A, Khan, AU, Shakeel, M, Khan, K, Alabduljabbar, H, et al.. Intelligent prediction modeling for flexural capacity of FRP-strengthened reinforced concrete beams using machine learning algorithms. Heliyon 2024;10:e23375. https://doi.org/10.1016/j.heliyon.2023.e23375.
  48. Alabduljabbar, H, Khan, M, Awan, HH, Eldin, SM, Alyousef, R, Mohamed, AM. Predicting ultra-high-performance concrete compressive strength using gene expression programming method. Case Stud Constr Mater 2023;18:e02074. https://doi.org/10.1016/j.cscm.2023.e02074.
  49. Yang, Q, Wu, Y, Zhi, P, Zhu, P. Effect of micro-cracks on chloride ion diffusion in concrete based on stochastic aggregate approach. Buildings 2024;14:1353. https://doi.org/10.3390/buildings14051353.
  50. Tariq, A, Polat, A, Deliktaş, B. Boosting machine learning algorithms for predicting the macroscopic material behavior of continuous fiber reinforced composite. J Reinf Plast Compos. 2024. https://doi.org/10.1177/07316844241292694.
  51. Polat, A, Tariq, A, Okay, F, Deliktaş, B. Investigation of the critical buckling load of a column with linearly varying moment of inertia using analytical, numerical, and hybrid machine learning approaches. J Strain Anal Eng Des 2025;60:612–31. https://doi.org/10.1177/03093247251337987.
  52. Tariq, A, Uzun, B, Deliktaş, B, Yaylı, MÖ. An investigation on ensemble machine learning algorithms for nonlinear stability response of a two-dimensional FG nanobeam. J Braz Soc Mech Sci Eng 2024;46:556. https://doi.org/10.1007/s40430-024-05093-5.
  53. Mohammed, A, Burhan, L, Ghafor, K, Sarwar, W, Mahmood, W. Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers. Neural Comput Appl 2021;33:7851–73. https://doi.org/10.1007/s00521-020-05525-y.
  54. Khan, M, Nassar, RUD, Khan, AU, Houda, M, El Hachem, C, Rasheed, M, et al.. Optimizing durability assessment: machine learning models for depth of wear of environmentally-friendly concrete. Results Eng 2023;20:101625. https://doi.org/10.1016/j.rineng.2023.101625.
  55. Shakr, PN, Mohammed, A, Hamad, SM, Kurda, R. Electrical resistivity-compressive strength predictions for normal strength concrete with waste steel slag as a coarse aggregate replacement using various analytical models. Constr Build Mater 2022;327:127008. https://doi.org/10.1016/j.conbuildmat.2022.127008.
Language: English
Submitted on: Apr 9, 2025
Accepted on: Nov 18, 2025
Published on: Dec 17, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Irfan Ullah, Muhammad Faisal Javed, Deema Mohammed Alsekait, Mohammed Jameel, Hisham Alabduljabbar, Khawaja Atif Naseem, Diaa Salama AbdElminaam, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.