Have a personal or library account? Click to login
Advanced hybrid machine learning models for estimating chloride penetration resistance of concrete structures for durability assessment: optimization and hyperparameter tuning Cover

Advanced hybrid machine learning models for estimating chloride penetration resistance of concrete structures for durability assessment: optimization and hyperparameter tuning

Open Access
|Dec 2025

Figures & Tables

Figure 1:

Chloride penetration resistance.
Chloride penetration resistance.

Figure 2:

Cement groups (EN 197-1).
Cement groups (EN 197-1).

Figure 3:

Cement types utilized in the database.
Cement types utilized in the database.

Figure 4:

Statistical distribution of the features and label.
Statistical distribution of the features and label.

Figure 5:

Spearman correlation heatmap.
Spearman correlation heatmap.

Figure 6:

Pearson correlation heatmap.
Pearson correlation heatmap.

Figure 7:

Overview of hybrid model development.
Overview of hybrid model development.

Figure 8:

Performance indicators for assessing model efficacy.
Performance indicators for assessing model efficacy.

Figure 9:

Scatter plots comparing predicted and actual values.
Scatter plots comparing predicted and actual values.

Figure 10:

Regression analysis of the developed models.
Regression analysis of the developed models.

Figure 11:

Evaluation of prediction accuracy using actual, predicted, and relative error values.
Evaluation of prediction accuracy using actual, predicted, and relative error values.

Figure 12:

Spider plots of statistical indicator scores.
Spider plots of statistical indicator scores.

Figure 13:

Mean SHAP plot: assessing feature’s significance.
Mean SHAP plot: assessing feature’s significance.

Figure 14:

Impact of variables: SHAP summary visualization.
Impact of variables: SHAP summary visualization.

Figure 15:

PDP analysis.
PDP analysis.

Figure 16:

ICE analysis.
ICE analysis.

Figure 17:

GUI
GUI

Statistical intuitions into the features_

StatisticsW/BWaterCementSlagFly ashSFFACATASPMT age D nssm
kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 % (by Wb)Day(×10−12 m2/s)
Mean0.42162.3330.0729.333.95.28759.06818.51,6360.4883.069.1
Median0.44164.5334.6100076894417460.47287.04
Mode0.45162360000786463.01,9600288.8
SD0.0954.68134.3285.681.819.9183.63307.0323.90.5395.479.42
Maximum0.651,0492,384.971,2847354681,574.11,2402,0974.17365133.6
Minimum0.198.4613.0200027.53054.04030.2
Skewness−0.029.748.328.235.1415.4−0.47−0.86−2.331.251.835.4

Overview of performance metrics for the proposed models_

PhaseModels R 2 Adj R 2 RMSEMAERSRa-10 indexa-20 index
TrainingSVR-GTO0.950.952.951.130.250.940.97
SVR-GWO0.940.933.122.070.270.920.95
SVR-PSO0.920.913.452.210.330.910.93
SVR-FFA0.900.903.562.340.450.900.92
TestingSVR-GTO0.970.970.930.330.110.940.98
SVR-GWO0.920.921.550.690.190.920.94
SVR-PSO0.910.901.670.870.240.900.93
SVR-FFA0.890.902.131.120.430.890.91

Comparative summary of ML models utilized in existing literature and the present study_

ReferenceBest modelModel interpretation R 2
[50]XGBoost 0.99
[51]PSO-XGBoostSHAP0.996
[52]LGB 0.999
[53]ANNSensitivity analysis0.99
[54]BRSHAP0.99
[55]MLP 0.912
Current studySVR-GTOSHAP, ICE, and PDP0.97
Language: English
Submitted on: Apr 9, 2025
Accepted on: Nov 18, 2025
Published on: Dec 17, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Irfan Ullah, Muhammad Faisal Javed, Deema Mohammed Alsekait, Mohammed Jameel, Hisham Alabduljabbar, Khawaja Atif Naseem, Diaa Salama AbdElminaam, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.