Have a personal or library account? Click to login
Empowering 3D printed concrete: discovering the impact of steel fiber reinforcement on mechanical performance Cover

Empowering 3D printed concrete: discovering the impact of steel fiber reinforcement on mechanical performance

Open Access
|Dec 2025

References

  1. Buswell, RA, da Silva, WRL, Bos, FP, Schipper, HR, Lowke, D, Hack, N, et al.. A process classification framework for defining and describing digital fabrication with concrete. Cement Concr Res 2020;134:106068. https://doi.org/10.1016/j.cemconres.2020.106068.
  2. Lloret-Fritschi, E, Wangler, T, Gebhard, L, Mata-Falcón, J, Mantellato, S, Scotto, F, et al.. From smart dynamic casting to a growing family of digital casting systems. Cement Concr Res 2020;134:106071. https://doi.org/10.1016/j.cemconres.2020.106071.
  3. Lowke, D, Dini, E, Perrot, A, Weger, D, Gehlen, C, Dillenburger, B. Particle-bed 3D printing in concrete construction – possibilities and challenges. Cement Concr Res 2018;112:50–65. https://doi.org/10.1016/j.cemconres.2018.05.018.
  4. Buswell, RA, Leal de Silva, WR, Jones, SZ, Dirrenberger, J. 3D printing using concrete extrusion: a roadmap for research. Cement Concr Res 2018;112:37–49. https://doi.org/10.1016/j.cemconres.2018.05.006.
  5. Kamhawi, A, Aghaei Meibodi, M. Techniques and strategies in extrusion based 3D concrete printing of complex components to prevent premature failure. Autom ConStruct 2024;168:105768. https://doi.org/10.1016/j.autcon.2024.105768.
  6. Farrokhsiar, P, Gursoy, B, Duarte, JP. A comprehensive review on integrating vision-based sensing in extrusion-based 3D printing processes: toward geometric monitoring of extrusion-based 3D concrete printing. Construction Robotics 2024;8:21. https://doi.org/10.1007/s41693-024-00133-x.
  7. Perrot, A, Rangeard, D, Courteille, E. 3D printing of earth-based materials: processing aspects. Constr Build Mater 2018;172:670–6. https://doi.org/10.1016/j.conbuildmat.2018.04.017.
  8. Paolini, A, Kollmannsberger, S, Rank, E. Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf 2019;30:100894. https://doi.org/10.1016/j.addma.2019.100894.
  9. Zhang, J, Wang, J, Dong, S, Yu, X, Han, B. A review of the current progress and application of 3D printed concrete. Compos Appl Sci Manuf 2019;125:105533. https://doi.org/10.1016/j.compositesa.2019.105533.
  10. Kazemian, A, Yuan, X, Davtalab, O, Khoshnevis, B. Computer vision for real-time extrusion quality monitoring and control in robotic construction. Autom ConStruct 2019;101:92–8. https://doi.org/10.1016/j.autcon.2019.01.022.
  11. Habibi, A, Buswell, R, Osmani, M, Aziminezhad, M. Sustainability principles in 3D concrete printing: analysing trends, classifying strategies, and future directions. J Build Eng 2024;98:111354. https://doi.org/10.1016/j.jobe.2024.111354.
  12. Batikha, M, Jotangia, R, Baaj, MY, Mousleh, I. 3D concrete printing for sustainable and economical construction: a comparative study. Autom ConStruct 2022;134:104087. https://doi.org/10.1016/j.autcon.2021.104087.
  13. Rahul, AV, Santhanam, M, Meena, H, Ghani, Z. Mechanical characterization of 3D printable concrete. Constr Build Mater 2019;227:116710. https://doi.org/10.1016/j.conbuildmat.2019.116710.
  14. Nan, B, Qiao, Y, Leng, J, Bai, Y. Advancing structural reinforcement in 3D-Printed concrete: current methods, challenges, and innovations. Materials 2025;18:252. https://doi.org/10.3390/ma18020252.
  15. Sun, J, Aslani, F, Lu, J, Wang, L, Huang, Y, Ma, G. Fibre-reinforced lightweight engineered cementitious composites for 3D concrete printing. Ceram Int 2021;47:27107–21. https://doi.org/10.1016/j.ceramint.2021.06.124.
  16. Li, S, Khieu, HH, Black, JR, Nguyen-Xuan, H, Tran, P. Two-scale 3D printed steel fiber reinforcements strategy for concrete structures. Constr Build Mater 2025;458:139626. https://doi.org/10.1016/j.conbuildmat.2024.139626.
  17. Hopkins, B, Si, W, Khan, M, McNally, C. Recent advancements in polypropylene fibre-reinforced 3D-Printed concrete: insights into mix ratios, testing procedures, and material behaviour. J Compos Sci 2025;9:292. https://doi.org/10.3390/jcs9060292.
  18. Li, H, Addai-Nimoh, A, Kreiger, E, Khayat, KH. Methodology to design eco-friendly fiber-reinforced concrete for 3D printing. Cement Concr Compos 2024;147:105415. https://doi.org/10.1016/j.cemconcomp.2023.105415.
  19. Si, W, Hopkins, B, Khan, M, McNally, C. Towards sustainable mortar: optimising sika-fibre dosage in ground granulated blast furnace slag (GGBS) and silica fume blends for 3D concrete printing. Buildings 2025;15:3436. https://doi.org/10.3390/buildings15193436.
  20. Panda, B, Paul, SC, Tan, MJ. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett 2017;209:146–9. https://doi.org/10.1016/j.matlet.2017.07.123.
  21. Pham, L, Tran, P, Sanjayan, J. Steel fibres reinforced 3D printed concrete: influence of fibre sizes on mechanical performance. Constr Build Mater 2020;250:118785. https://doi.org/10.1016/j.conbuildmat.2020.118785.
  22. Roussel, N. Rheological requirements for printable concretes. Cement Concr Res 2018;112:76–85. https://doi.org/10.1016/j.cemconres.2018.04.005.
  23. Tay, YWD, Qian, Y, Tan, MJ. Printability region for 3D concrete printing using slump and slump flow test. Compos B Eng 2019;174:106968. https://doi.org/10.1016/j.compositesb.2019.106968.
  24. Perrot, A, Rangeard, D. 3D printing in concrete: techniques for extrusion/casting. 3D Printing of Concrete 2019:41–72. https://doi.org/10.1002/9781119610755.ch2.
  25. Lu, B, Weng, Y, Li, M, Qian, Y, Leong, KF, Tan, MJ, et al.. A systematical review of 3D printable cementitious materials. Constr Build Mater 2019;207:477–90. https://doi.org/10.1016/j.conbuildmat.2019.02.144.
  26. Buswell, RA, Soar, RC, Gibb, AG, Thorpe, A. Freeform construction: mega-scale rapid manufacturing for construction. Autom ConStruct 2007;16:224–31. https://doi.org/10.1016/j.autcon.2006.05.002.
  27. Weng, Y, Li, M, Tan, MJ, Qian, S. Design 3D printing cementitious materials via fuller Thompson theory and Marson-Percy model. Constr Build Mater 2018;163:600–10. https://doi.org/10.1016/j.conbuildmat.2017.12.112.
  28. Lee, SH, Kim, HJ, Sakai, E, Daimon, M. Effect of particle size distribution of fly ash–cement system on the fluidity of cement pastes. Cement Concr Res 2003;33:763–8. https://doi.org/10.1016/s0008-8846(02)01054-2.
  29. Le, TT, Austin, SA, Lim, S, Buswell, RA, Gibb, AGF, Thorpe, T. Mix design and fresh properties for high-performance printing concrete. Mater Struct 2012;45:1221–32. https://doi.org/10.1617/s11527-012-9828-z.
  30. Zhang, C, Nerella, VN, Krishna, A, Wang, S, Zhang, Y, Mechtcherine, V, et al.. Mix design concepts for 3D printable concrete: a review. Cement Concr Compos 2021;122:104155. https://doi.org/10.1016/j.cemconcomp.2021.104155.
  31. Khan, MA. Mix suitable for concrete 3D printing: a review. Mater Today Proc 2020;32:831–7. https://doi.org/10.1016/j.matpr.2020.03.825.
  32. L. Bing, “Mixture design and processing of novel spray-based cementitious materials for 3D printing,” PhD, School of Civil and Environmental Engineering, Singapore Centre for 3D Printing Nanyang Technological University; 2019. Available from: https://dr.ntu.edu.sg/entities/publication/d668d0f4-32c2-4ba8-aad4-d93b249c86fc.
  33. Yang, Y, Wu, C, Liu, Z, Zhang, H. 3D-printing ultra-high performance fiber-reinforced concrete under triaxial confining loads. Addit Manuf 2022;50:102568. https://doi.org/10.1016/j.addma.2021.102568.
  34. Pham, L, Lu, G, Tran, P. Influences of printing pattern on mechanical performance of three-dimensional-printed fiber-reinforced concrete. 3D Print Addit Manuf 2020;9:46–63. https://doi.org/10.1089/3dp.2020.0172.
  35. Hassan, A, Ilerioluwa, G, Daniel, EG, Marc, H, Hassan, N, Gabriel, AA, et al.. Studying steel fiber reinforcement for 3D printed elements and structures. TX: Tran-SET; 2022:299–309 pp.
  36. Yang, Y, Wu, C, Liu, Z, Wang, H, Ren, Q. Mechanical anisotropy of ultra-high performance fibre-reinforced concrete for 3D printing. Cement Concr Compos 2022;125:104310. https://doi.org/10.1016/j.cemconcomp.2021.104310.
  37. Giwa, I, Game, D, Ahmed, H, Noorvand, H, Arce, G, Hassan, M, et al.. Performance and macrostructural characterization of 3D printed steel fiber reinforced cementitious materials. Constr Build Mater 2023;369:130593. https://doi.org/10.1016/j.conbuildmat.2023.130593.
  38. Xia, Z, Geng, J, Zhou, Z, Liu, G. Comparative analysis of polypropylene, basalt, and steel fibers in 3D printed concrete: effects on flowability, printability, rheology, and mechanical performance. Constr Build Mater 2025;465:140098. https://doi.org/10.1016/j.conbuildmat.2025.140098.
  39. Altheoy, F, Zaid, O, Ahmed, B, Elhadi, KM. Impact of double hooked steel fibers and nano-kaolin clay on fresh properties of 3D-Printable ultra-high-performance fiber-reinforced concrete. J Build Eng 2024;97:110917. https://doi.org/10.1016/j.jobe.2024.110917.
  40. Jia, Z, Zhou, M, Chen, Y, Wang, W, Ma, L, Chen, Y, et al.. Effect of steel fiber shape and content on printability, microstructure and mechanical properties of 3D printable high strength cementitious materials. Case Stud Constr Mater 2024;20:e03080. https://doi.org/10.1016/j.cscm.2024.e03080.
  41. Huang, J, Peng, Z, Tan, X, Gong, G, Yang, H, Ren, K, et al.. Mechanism analysis of the magnetic field assisted 3D printed steel fiber reinforced concrete. Constr Build Mater 2025;458:139737. https://doi.org/10.1016/j.conbuildmat.2024.139737.
  42. Chu, SH, Li, LG, Kwan, AKH. Development of extrudable high strength fiber reinforced concrete incorporating nano calcium carbonate. Addit Manuf 2021;37:101617. https://doi.org/10.1016/j.addma.2020.101617.
  43. Chen, M, Li, J, Zhang, T, Zhang, M. 3D printability of recycled steel fibre-reinforced ultra-high performance concrete. Constr Build Mater 2025;462:139877. https://doi.org/10.1016/j.conbuildmat.2025.139877.
  44. Majain, N, Rahman, ABA, Mohamed, RN, Adnan, A. Effect of steel fibers on self-compacting concrete slump flow and compressive strength. IOP Conf Ser Mater Sci Eng 2019;513:012007. https://doi.org/10.1088/1757-899x/513/1/012007.
  45. Guerini, V, Conforti, A, Plizzari, G, Kawashima, S. Influence of steel and macro-synthetic fibers on concrete properties. Fibers 2018;6:47. https://doi.org/10.3390/fib6030047.
  46. Cao, G, Li, Z, Jiang, S, Tan, Y, Li, Z, Long, S, et al.. Experimental analysis and numerical simulation of flow behavior of fresh steel fibre reinforced concrete in magnetic field. Constr Build Mater 2022;347:128505. https://doi.org/10.1016/j.conbuildmat.2022.128505.
  47. Zhang, Y, Zhu, Y, Ren, Q, He, B, Jiang, Z, Van Tittelboom, K, et al.. Comparison of printability and mechanical properties of rigid and flexible fiber-reinforced 3D printed cement-based materials. Constr Build Mater 2023;400:132750. https://doi.org/10.1016/j.conbuildmat.2023.132750.
  48. Singh, A, Liu, Q, Xiao, J, Lyu, Q. Mechanical and macrostructural properties of 3D printed concrete dosed with steel fibers under different loading direction. Constr Build Mater 2022;323:126616. https://doi.org/10.1016/j.conbuildmat.2022.126616.
  49. Arunothayan, AR, Nematollahi, B, Khayat, KH, Ramesh, A, Sanjayan, JG. Rheological characterization of ultra-high performance concrete for 3D printing. Cement Concr Compos 2023;136:104854. https://doi.org/10.1016/j.cemconcomp.2022.104854.
  50. Kazemian, A, Yuan, X, Cochran, E, Khoshnevis, B. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater 2017;145:639–47. https://doi.org/10.1016/j.conbuildmat.2017.04.015.
  51. Soltan, DG, Li, VC. A self-reinforced cementitious composite for building-scale 3D printing. Cement Concr Compos 2018;90:1–13. https://doi.org/10.1016/j.cemconcomp.2018.03.017.
  52. Hou, S, Duan, Z, Xiao, J, Ye, J. A review of 3D printed concrete: performance requirements, testing measurements and mix design. Constr Build Mater 2021;273:121745. https://doi.org/10.1016/j.conbuildmat.2020.121745.
  53. Li, H, Wei, J, Khayat, KH. 3D printing of fiber-reinforced calcined clay-limestone-based cementitious materials: from mixture design to printability evaluation. Buildings 2024;14:1666. https://doi.org/10.3390/buildings14061666.
  54. Arunothayan, AR, Nematollahi, B, Ranade, R, Bong, SH, Sanjayan, J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Constr Build Mater 2020;257:119546. https://doi.org/10.1016/j.conbuildmat.2020.119546.
  55. Arunothayan, AR, Nematollahi, B, Ranade, R, Bong, SH, Sanjayan, JG, Khayat, KH. Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cement Concr Res 2021;143:106384. https://doi.org/10.1016/j.cemconres.2021.106384.
  56. Shahzad, Q, Abbas, N, Akbar, M, Sabi, E, Thomas, BS, Arshid, MU. Influence of print speed and nozzle diameter on the fiber alignment in 3D printed ultra-high-performance concrete. Front Mater 2024;11:1355647. https://doi.org/10.3389/fmats.2024.1355647.
  57. Bos, FP, Bosco, E, Salet, TA. Ductility of 3D printed concrete reinforced with short straight steel fibers. Virtual Phys Prototyp 2019;14:160–74. https://doi.org/10.1080/17452759.2018.1548069.
  58. Lesovik, V, Fediuk, R, Amran, M, Alaskhanov, A, Volodchenko, A, Murali, G, et al.. 3D-printed mortars with combined steel and polypropylene fibers. Fibers 2021;9:79. https://doi.org/10.3390/fib9120079.
  59. Zhou, J, Lai, J, Du, L, Wu, K, Dong, S. Effect of directionally distributed steel fiber on static and dynamic properties of 3D printed cementitious composite. Constr Build Mater 2022;318:125948. https://doi.org/10.1016/j.conbuildmat.2021.125948.
  60. Bukhari, SJS, Khanzadeh, MM. Multicriteria performance assessment of ‘low w/c + low cement + high dosage admixture’ concrete: environmental, economic, durability, and mechanical performance considerations. J Clean Prod 2025;523:146419. https://doi.org/10.1016/j.jclepro.2025.146419.
  61. Bouchelil, L, Shah Bukhari, SJ, Khanzadeh Moradllo, M. Evaluating the performance of internally cured limestone calcined clay concrete mixtures. J Sustain Cem-Based Mater 2025;14:198–208. https://doi.org/10.1080/21650373.2024.2432002.
  62. Al Fahim, A, Bukhari, SJS, Moradllo, MK. Additive manufacturing of carbonatable ternary cementitious systems with cellulose nanocrystals. Constr Build Mater 2025;495:143753. https://doi.org/10.1016/j.conbuildmat.2025.143753.
Language: English
Submitted on: Sep 25, 2025
Accepted on: Nov 8, 2025
Published on: Dec 11, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Zhongling Tong, Qingtao Guan, Ahmed A. Abdou Elabbasy, Ali H. AlAteah, Ahmed M. Maglad, Mohammad Alharthai, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.