References
- Negm, A. A., A. El Nemr, F. Elgabbas, and M. A. Khalaf. High and normal strength concrete using grounded vitrified clay pipe (GVCP). Cleaner Materials, Vol. 5, 2022, id. 100107.
- Gill, P., V. S. Rathanasalam, P. Jangra, T. M. Pham, and D. K. Ashish. Mechanical and microstructural properties of fly ash-based engineered geopolymer mortar incorporating waste marble powder. Energy, Ecology and Environment, Vol. 9, No. 2, Springer 2024, pp. 159–174.
- Agrawal, D., K. Ansari, U. Waghe, M. Goel, S. P. Raut, H. Warade, et al. Exploring the impact of pretreatment and particle size variation on properties of rubberized concrete. Scientific Reports, Vol. 15, No. 1, 2025, id. 11394.
- Mohamed, M.A.M., F. Elgabbas, A. El-Nemr, and M. A. Khalaf. The influence of glass powder as a cement replacement material on ultra-high-performance concrete. CERM, Vol. 43, 2021, pp. 315–323.
- El Nemr, A. M., M. A. Shawky, and M. El Khafif. The effect of mineral pigments on mechanical properties of concrete. Journal of Civil Engineering and Construction, Vol. 11, No. 3, 2022, pp. 139–152.
- Garg, A., P. Jangra, D. Singhal, T. M. Pham, and D. K. Ashish. Durability studies on conventional concrete and slag-based geopolymer concrete in aggressive sulphate environment. Energy, Ecology and Environment, Vol. 9, No. 3, Springer 2024, pp. 314–330.
- Ashish, D. K.. Concrete made with waste marble powder and supplementary cementitious material for sustainable development. Journal of Cleaner Production, Vol. 211, Elsevier 2019, pp. 716–729.
- Prasittisopin, L.. Power plant waste (fly ash, bottom ash, biomass ash) management for promoting circular economy in sustainable construction: emerging economy context. Smart and sustainable built environment, 2024 ahead-of-p(ahead-of-print).
- Gill, P., P. Jangra, and D. K. Ashish. Non-destructive prediction of strength of geopolymer concrete employing lightweight recycled aggregates and copper slag. Energy, Ecology and Environment, Vol. 8, No. 6, 2023, pp. 596–609.
- Ameri, F., P. Shoaei, H. R. Musaeei, S. A. Zareei, and C. B. Cheah. Partial replacement of copper slag with treated crumb rubber aggregates in alkali-activated slag mortar. Construction and Building Materials, Vol. 256, 2020, id. 119468.
- Al-Jabri, K. S., M. Hisada, S. K. Al-Oraimi, and A. H. Al-Saidy. Copper slag as sand replacement for high performance concrete. Cement and Concrete Composites, Vol. 31, No. 7, 2009, pp. 483–488.
- Arunachalam, K. P., S. Avudaiappan, N. Maureira-Carsalade, F. D. C. Garcia Filho, S. N. Monteiro, I. D. Batista, et al. Innovative use of copper mine tailing as an additive in cement mortar. Journal of Materials Research and Technology, Vol. 25, 2023, pp. 2261–2274.
- Nagarajan, D., R. Prakash, S. Srividhya, S. Avudaiappan, P. Guindos, N. M. Carsalade, et al. Experimental and numerical investigations of laced built-up lightweight concrete encased columns subjected to cyclic axial load. Buildings, Vol. 13, No. 6, 2023, id. 1444.
- Edwin, R. S., E. Gruyaert, and N. De Belie. Valorization of secondary copper slag as aggregate and cement replacement in ultra-high performance concrete. Journal of Building Engineering, Vol. 54, 2022, id. 104567.
- Waghe, U., D. Agrawal, K. Ansari, M. Wagh, M. Amran, B. T. Alsulami, et al.. Enhancing eco-concrete performance through synergistic integration of sugarcane, metakaolin, and crumb rubber: Experimental investigation and response surface optimization. Journal of Engineering Research, Vol 12, No. 4, 2024, pp. 645–658.
- Al-Jabri, K. S., A. H. Al-Saidy, and R. Taha. Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Construction and Building Materials, Vol. 25, No. 2, 2011, pp. 933–938.
- Patil, M. V. and Y. D. Patil. Effect of copper slag and granite dust as sand replacement on the properties of concrete. Materials Today: Proceedings, Elsevier Ltd 2020, pp. 1666–1677.
- Sharma, R. and R. A. Khan. Influence of copper slag and metakaolin on the durability of self compacting concrete. Journal of Cleaner Production, Vol. 171, Elsevier Ltd 2018, pp. 1171–1186.
-
[19]
Harikaran, M., S. Gokulakannan, A. Loganathan, R. D. Chandiran, M. Ajith, and V. Dhanasekar. Metakaolin cement concrete evaluation using industrial by-products as fine aggregate. Materials Today: Proceedings, 2023. 10.1016/j.matpr.2023.04.586
Harikaran M. Gokulakannan S. Loganathan A. Chandiran R. D. Ajith M. Dhanasekar V. Metakaolin cement concrete evaluation using industrial by-products as fine aggregate Materials Today: Proceedings 2023 10.1016/j.matpr.2023.04.586
- Karatas, M., M. Dener, M. Mohabbi, and A. Benli. A study on the compressive strength and microstructure characteristic of alkali-activated metakaolin cement. Matéria (Rio de Janeiro), Vol. 24, SciELO Brasil 2019, id. e12507.
- Bheel, N., P. Awoyera, I. A. Shar, S. A. Abbasi, S. H. Khahro, and K. P. Arunachalam. Synergic effect of millet husk ash and wheat straw ash on the fresh and hardened properties of Metakaolin-based self-compacting geopolymer concrete. Case Studies in Construction Materials, Vol. 15, 2021, id. e00729.
- Zhang, M. H. and V. M. Malhotra. Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cement and Concrete Research, Vol. 25, No. 8, 1995, pp. 1713–1725.
- Paiva, H., A. Velosa, P. Cachim, and V. M. Ferreira. Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cement and Concrete Research, Vol. 42, No. 4, 2012, pp. 607–612.
- Arslan, S., A. Öz, A. Benli, B. Bayrak, G. Kaplan, and A. C. Aydın. Sustainable use of silica fume and metakaolin in slag/fly ash-based self-compacting geopolymer composites: Fresh, physico-mechanical and durability properties. Sustainable Chemistry and Pharmacy, Vol. 38, Elsevier 2024, id. 101512.
- Zhang, Q., B. Liu, Z. Sun, Q. Li, S. Wang, X. Lu, et al. Preparation and hydration process of copper slag-granulated blast furnace slag-cement composites. Construction and Building Materials, Vol. 421, 2024, id. 135717.
- Win, T., T. Buasiri, W. Pansuk, and L. Prasittisopin. Effects of combinations of limestone powder and metakaolin on mortar compressive strength development. Suranaree Journal of Science and Technology, Vol. 30, 2023, id. 30148.
- Avudaiappan, S., P. Cendoya, K. P. Arunachalam, N. Maureira-Carsalade, C. Canales, M. Amran, et al. Innovative use of single-use face mask fibers for the production of a sustainable cement mortar. Journal of Composites Science, Vol. 7, No. 6, 2023, id. 214.
- Rekha, M. S., S. R. Sumathy, K. P. Arunachalam, S. Avudaiappan, M. Abbas, and D. B. Fernande. Effects of alkaline concentration on workability and strength properties of ambient cured green geopolymer concrete. Asian Journal of Civil Engineering, Vol. 25, No. 6, 2024, pp. 4893–4910.
- Samatha, B., C. A. C. Cardenas, S. M. Ahmed, S. Avudaiappan, L. P. D Badilla, T. Marzialetti, et al. Experimental study of nanosilica based concrete with nano silica gel. In International Conference on the Mechanical Behaviour of Materials, Springer Nature Switzerland, Cham, 2023, pp. 315–330.
- Patil, A. V., V. Jayale, K. P. Arunachalam, K. S. Ansari, S. Avudaiappan, D. Agrawal, et al. Performance analysis of self-compacting concrete with use of artificial aggregate and partial replacement of cement by fly ash. Buildings, Vol. 14, No. 1, 2024, id. 143.
- San Nicolas, R., M. Cyr, and G. Escadeillas. Performance-based approach to durability of concrete containing flash-calcined metakaolin as cement replacement. Construction and Building Materials, Vol. 55, 2014, pp. 313–322.
- Nainwal, A., P. K. Emani, M. C. Shah, A. Negi, V. Kumar, and P. Negi. The influence of Metakaolin on the copper slag substituted concrete with the fine aggregate of Beas river. Materials Today: Proceedings, Vol. 46, 2021, pp. 10425–10432.
- Bayraktar, O. Y., A. Benli, B. Bodur, A. Öz, and G. Kaplan. Performance assessment and cost analysis of slag/metakaolin based rubberized semi-lightweight geopolymers with perlite aggregate: Sustainable reuse of waste tires. Construction and Building Materials, Vol. 411, Elsevier 2024, id. 134655.
- Zheng, X., J. Pan, S. Easa, T. Fu, H. Liu, W. Liu, et al. Utilization of copper slag waste in alkali-activated metakaolin pervious concrete. Journal of Building Engineering, Vol. 76, 2023, id. 107246.
- Zalnezhad, A., S. A. Hosseini, R. Shirinabadi, and M. E. Korandeh. Feasibility of using copper slag as natural aggregate replacement in microsurfacing for quality enhancement: Microscopic and mechanical analysis. Construction and Building Materials, Vol. 354, 2022, id. 129175.
- Ashish, D. K. and S. K. Verma. Determination of optimum mixture design method for self-compacting concrete: Validation of method with experimental results. Construction and Building Materials, Vol. 217, Elsevier 2019, pp. 664–678.
- Ezzedine El Dandachy, M., L. Hassoun, A. El-Mir, and J. M. Khatib. Effect of elevated temperatures on compressive strength, ultrasonic pulse velocity, and transfer properties of metakaolin-based geopolymer mortars. Buildings, Vol. 14, No. 7, MDPI 2024, id. 2126.
- Boakye, K., M. Khorami, M. Saidani, E. Ganjian, A. Dunster, M. Tyrer, et al. Influence of calcining temperature on the mineralogical and mechanical performance of calcined impure kaolinitic clays in portland cement mortars. journal of materials in civil engineering. American Society of Civil Engineers, Vol. 36, No. 4, 2024, id. 4024040.
- Kanagaraj, B., N. Anand, D. Andrushia, M. E. Mathews, J. Alengaram, P. Arulraj, et al. Mechanical properties and microstructure characteristics of self-compacting concrete with different admixtures exposed to elevated temperatures. Jordan Journal of Civil Engineering, Vol. 17, 2023, pp. 1–9.
- Yan, D., S. Chen, and Y. Liu. Heat resistance of MKG. Metakaolin-based geopolymers: design, mechanisms and performance, Springer Nature Singapore, Singapore, 2024, pp. 159–179.
- Arslan, F., A. Benli, and M. Karatas. Effect of high temperature on the performance of self-compacting mortars produced with calcined kaolin and metakaolin. Construction and Building Materials, Vol. 256, 2020, id. 119497.
- Jindal, B. B., D. Singhal, S. K. Sharma, and D. K. Ashish. Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine. Advances in Concrete Construction, Vol. 5, No. 1, Techno-Press 2017, id. 17.
- Ashish, D. K. and S. K. Verma. Cementing efficiency of flash and rotary-calcined metakaolin in concrete. Journal of Materials in Civil Engineering, Vol. 31, No. 12, American Society of Civil Engineers 2019, id. 4019307.
- Dash, M. K., S. K. Patro, and A. K. Rath. Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete – A review. International Journal of Sustainable Built Environment, Vol. 5, Elsevier B.V. 2016, pp. 484–516.
- Agrawal, D., U. P. Waghe, M. D. Goel, and A. Bagde. Effect of micro-silica and crumb rubber on mechanical properties of concrete. Engineering Access, Vol. 10, No. 2, 2024, pp. 189–196.
- Agrawal, D., U. P. Waghe, M. D. Goel, S. P. Raut, and R. Patil. Performance of geopolymer concrete developed using waste tire rubber and other industrial wastes: a critical review. Recent Trends in Construction Technology and Management: Select Proceedings of ACTM 2021, 2022, pp. 29–42.
- Agrawal, D., U. Waghe, K. Ansari, R. Dighade, M. Amran, D. N. Qader, et al. Experimental effect of pre-treatment of rubber fibers on mechanical properties of rubberized concrete. Journal of Materials Research and Technology, Vol. 23, 2023, pp. 791–807.
- Agrawal, D., U. Waghe, K. Ansari, M. Amran, Y. Gamil, A. E. Alluqmani, et al. Optimization of eco-friendly concrete with recycled coarse aggregates and rubber particles as sustainable industrial byproducts for construction practices. Heliyon, Vol. 10, No. 4, 2024, pp. e25923–e25923.
- Ashish, D. K. and S. K. Verma. Robustness of self-compacting concrete containing waste foundry sand and metakaolin: A sustainable approach. Journal of Hazardous Materials, Vol. 401, 2021, id. 123329.
- Ashish, D. K., S. K. Verma, M. Ju, and H. Sharma. High volume waste foundry sand self-compacting concrete–Transitioning industrial symbiosis. Process Safety and Environmental Protection, Vol. 173, 2023, pp. 666–692Elsevier.
- Talati, I., K. J. Shah, O. Patel, J. Tanna, A. Jain, A. D. Oza, et al. Study of AQI monitoring system of indoor environment using machine learning model and IoT device, Rocznik Ochrona Środowiska, Vol. 27, 2025, pp. 152–163.
- Sharma, H., D. K. Ashish, and S. K. Sharma. Development of low-carbon recycled aggregate concrete using carbonation treatment and alccofine. Energy, Ecology and Environment, Vol. 9, No. 3, 2024, pp. 230–240.
- 269 IS. Ordinary Portland Cement Specification. IS 269-2015, New Delhi, India. 2015;Sixth Revi(December):1–14.
- 3IS 2386 P. Methods Of Test For Aggregates For Concrete Specific Gravity, Density, Voids, Absorption And Bulking. IS 2386 Part 3-2016, New Delhi, India. 1963;2386 Part(October 1963):1–19.
- 383 IS. Coarse and fine aggregate for concrete - Specification. Bureau of Indian Standards IS 383 -2016, New Delhi, India. 2016;(January):1–18.
-
[56]
5 IS 1199 P. Fresh Concrete-Methods of Sampling, Testing and Analysis Part 5 Making and Curing of Test Specimens (First Revision). IS 1199 Part 5-2018, New Delhi, India [Internet]. 2018;1199(December). Available from: www.standardsbis.in
5 IS 1199 P. Fresh Concrete-Methods of Sampling, Testing and Analysis Part 5 Making and Curing of Test Specimens (First Revision). IS 1199 Part 5-2018, New Delhi, India [Internet]. 2018;1199(December). Available from: www.standardsbis.in
- Elnemr, A. and R. Shaltout. Rheological and mechanical characterization of self-compacting concrete using recycled aggregate, Materials, Vol. 18, No. 7, 2024, id. 1519.
-
[58]
516 IS. Hardened concrete – Methods of test. IS 516-2021, New Delhi, India [Internet]. 2021;54(August):1–20. Available from: www.standardsbis.in.
516 IS. Hardened concrete – Methods of test. IS 516-2021, New Delhi, India [Internet]. 2021;54(August):1–20. Available from: www.standardsbis.in.
- 5816 IS. Specification for splitting tensile strength of concrete -Method of Test. IS 5816-1999, New Delhi, India. 1999, pp. 1–8.
- C1202. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration 1. ASTM C1202. 2012; 10.1520/C1202-12.
- Patil, M. V. and Y. D. Patil. Effect of copper slag and granite dust as sand replacement on the properties of concrete. Materials Today: Proceedings, Vol. 43, 2021, pp. 1666–1677.
- Patil, M. V.. Properties and effects of copper slag in concrete. International Journal of Advances in Mechanical and Civil Engineering, Vol. 2, No. 2, 2015.
- Kurzekar, A. S., U. Waghe, K. Ansari, A. N. Dabhade, T. Biswas, S. Algburi, et al. Development and optimization of geopolymer-based artificial angular coarse aggregate using cut-blade mechanism. Case Studies in Construction Materials, Vol. 21, 2024, id. e03826.
- Waghe U., D. Agrawal, K. Ansari, M. Wagh, M. Amran, B. T. Alsulami, et al. Enhancing eco-concrete performance through synergistic integration of sugarcane, metakaolin, and crumb rubber: Experimental investigation and response surface optimization. Journal of Engineering Research, No. 12, No. 4, 2024, pp. 645–658.