Have a personal or library account? Click to login
Unveiling the crucial factors and coating mitigation of solid particle erosion in steam turbine blade failures: A review Cover

Unveiling the crucial factors and coating mitigation of solid particle erosion in steam turbine blade failures: A review

Open Access
|Mar 2025

References

  1. Zhu, M. Design and analysis of steam turbine blades. 3rd International Conference on Fluid Mechanics and Industrial Applications, vol. 1300, IOP Publishing, Taiyun, China, 2019, pp. 1–6.
  2. Joseph Omosanya, A., E. Titilayo Akinlabi, and J. Olusegun Okeniyi. Overview for improving steam turbine power generation efficiency. International Conference on Engineering for Sustainable World, vol. 1378, Institute of Physics Publishing, Ota, Nigeria, 2019, pp. 1–8.
  3. Kirols, H. S., D. Kevorkov, A. Uihlein, and M. Medraj. Water droplet erosion of stainless steel steam turbine blades. Materials Research Express, Vol. 4, 2017, pp. 1–12.
  4. Zhang, Z., B. Yang, D. Zhang, and Y. Xie. Experimental investigation on the water droplet erosion characteristics of blade materials for steam turbine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, 2020, pp. 1–13.
  5. Viswanath, T. and V. Kumar. Investigation on last stage high pressure steam turbine blade for producing electricity. Journal of Applied Mechanical Engineering, Vol. 4, 2015, pp. 1–5.
  6. Alqallaf, J., N. Ali, J. A. Teixeira, and A. Addali. Solid particle erosion behaviour and protective coatings for gas turbine compressor blades-A review. Processes, Vol. 8, 2020, pp. 1–42.
  7. Swain, B., P. Mallick, S. Patel, R. Roshan, S. S. Mohapatra, S. Bhuyan, et al. Failure analysis and materials development of gas turbine blades. Mater Today Proc, vol. 33, Elsevier Ltd, 2020, pp. 5143–5146.
  8. Zhang, Z., F. Li, L. Cao, P. Hu, and Y. Li. Research on characteristics of solid particle erosion in governing stage of a 600 MW supercritical steam turbine. Applied Thermal Engineering, Vol. 118, 2017, pp. 471–479.
  9. Dick, E. Steam turbines, vol. 109, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2015.
  10. Kumar, M. Y. and M. V. R. Reddy. Structural & thermal analysis of different materials of steam turbine blade shaft using finite element methods. AIP Conference Proceedings, vol. 2648, American Institute of Physics Inc, 2022, pp. 1–8.
  11. Azeez, A. High-temperature fatigue in a steam turbine steel modelling of cyclic deformation and crack closure, Licentiate Thesis, Linkoping University, 2021.
  12. Mukherjee, A., N. Bhargava, P. Mathur, K. Varun, and S. S. Prabu. Investigation on performance evaluation and thermal and structural analysis of steam turbine blades. ECS Transactions, Vol. 107, 2022, pp. 18435–18445.
  13. Kumaraswamy, K. and A. Siva Naga Raju. Design and vibrational analysis of steam. International Journal of Research in Engineering, Science and Management, Vol. 2, No. 5, 2019, pp. 731–773.
  14. Shukla, A. and S. P. Harsha. Vibration response analysis of last stage LP turbine blades for variable size of crack in root. Procedia Technology, Vol. 23, 2016, pp. 232–239.
  15. Adnyana, D. N. Corrosion fatigue of a low-pressure steam turbine blade. Journal of Failure Analysis and Prevention, Vol. 18, 2018, pp. 162–173.
  16. Katinić, M. and M. Ljubičić. Numerical and experimental vibration analysis of a steam turbine rotor blade. Tehnički Glasnik, Vol. 15, 2021, pp. 462–466.
  17. Thijel, J. F., M. Al-hafidh, and H. A. Abdul-Husain. Case study: Investigation of the fracture of low pressure steam turbine blade. International Journal of Engineering Science Invention (IJESI), Vol. 10, 2021, pp. 28–33.
  18. He, Q., S. Xue, H. He, F. Hu, H. C. Gao, and W. Hu. Fatigue fracture failure analysis of 12Cr12Mo steam turbine blade. Engineering Failure Analysis, Vol. 150, 2023, pp. 1–8.
  19. Poljak, I., J. Orović, V. Knežević, and V. Mrzljak. LNG carrier main steam turbine reliability in the exploatation period of time. TransNav, Vol. 14, 2020, pp. 39–42.
  20. Rodrígez Ramírez, J. A., C. M. Clemente Mirafuentes, M. A. Zalapa Garibay, J. C. García Castrejón, and L. G. Guillén Anaya. Corrosion fatigue analysis in power steam turbine blade. Metals (Basel), Vol. 13, 2023, id. 544.
  21. Yadav, K. K., D. Singh, P. Priyadarshi, M. Kumar, V. Kumar, P. K. Sharma, et al. Studies and analysis of effect of foreign particles on the parts of steam turbine. International Journal of Applied Engineering Research, Vol. 13, 2018, pp. 386–395.
  22. Plesiutschnig, E., P. Fritzl, N. Enzinger, and C. Sommitsch. Fracture analysis of a low pressure steam turbine blade. Case Studies in Engineering Failure Analysis, Vol. 5–6, 2016, pp. 39–50.
  23. Cano, S., J. A. Rodríguez, J. M. Rodríguez, J. C. García, F. Z. Sierra, S. R. Casolco, et al. Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue. Engineering Failure Analysis, Vol. 97, 2019, pp. 579–588.
  24. Zhao, W., Y. Li, M. Xue, P. Wang, and J. Jiang. Vibration analysis for failure detection in low pressure steam turbine blades in nuclear power plant. Engineering Failure Analysis, Vol. 84, 2018, pp. 11–24.
  25. Krechkovska, H., M. Hredil, O. Student, L. Svirska, S. Krechkovska, I. Tsybailo, et al. Peculiarities of fatigue fracture of high-alloyed heat-resistant steel after its operation in steam turbine rotor blades. International Journal of Fatigue, Vol. 167, 2023, id. 107341.
  26. Gong, J. G., S. S. Guo, F. H. Gao, T. Y. Niu, and F. Z. Xuan. Creep damage and interaction behavior of neighboring notches in components at elevated temperature. Engineering Fracture Mechanics, Vol. 256, 2021, pp. 1–17.
  27. Mudang, M., E. Hamzah, H. R. Bakhsheshi-Rad, and F. Berto. Effect of heat treatment on microstructure and creep behavior of Fe-40Ni-24Cr alloy. Applied Sciences, Vol. 11, 2021, pp. 1–18.
  28. Abdollahzadeh Jamalabadi, M. Y. Thermal radiation effects on creep behavior of the turbine blade. Multidiscipline Modeling in Materials and Structures, Vol. 12, 2016, pp. 291–314.
  29. Quintanar-Gago, D. A., P. F. Nelson, Á. Díaz-Sánchez, and M. S. Boldrick. Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network. Reliability Engineering & System Safety, Vol. 207, 2021, pp. 1–31.
  30. Synac, J., B. Rudas, and M. Luxa. Erosion of steam turbine last stages. AIP Conference Proceedings, vol. 2323, American Institute of Physics Inc, Pilsen Czech, 2021, pp. 1–4.
  31. Ahmad, M., M. Schatz, and M. V. Casey. Experimental investigation of droplet size influence on low pressure steam turbine blade erosion. Wear, Vol. 303, 2013, pp. 83–86.
  32. Li, D., P. Jiang, F. Sun, X. Yuan, J. Zhang, and X. Cao. Water-droplet erosion behavior of high-velocity oxygen-fuel-sprayed coatings for steam turbine blades. Corrosion Reviews, Vol. 40, 2022, pp. 39–49.
  33. Hosseinizadeh, S. E., E. Ghamati, A. Jahangiri, S. Majidi, I. Khazaee, and M. A. Faghih Aliabadi. Reduction of water droplets effects in steam turbine blade using Multi-objective optimization of hot steam injection. International Journal of Thermal Sciences, Vol. 187, 2023, pp. 1–20.
  34. Cai, F., X. Huang, and Q. Yang. Mechanical properties, sliding wear and solid particle erosion behaviors of plasma enhanced magnetron sputtering CrSiCN coating systems. Wear, Vol. 324–325, 2015, pp. 27–35.
  35. Ilieva, G. I. Erosion failure mechanisms in turbine stage with twisted rotor blade. Engineering Failure Analysis, Vol. 70, 2016, pp. 90–104.
  36. Shitole, P. P., S. H. Gawande, G. R. Desale, and B. D. Nandre. Effect of impacting particle kinetic energy on slurry erosion wear. Journal of Bio and Tribo Corrosion, Vol. 1, 2015, pp. 1–9.
  37. Laguna-Camacho, J. R., A. Marquina-Chávez, J. V. Méndez-Méndez, M. Vite-Torres, and E. A. Gallardo-Hernández. Solid particle erosion of AISI 304, 316 and 420 stainless steels. Wear, Vol. 301, 2013, pp. 398–405.
  38. Cao, L., S. Liu, and R. Wang. Influence of axial clearance on solid particle erosion and efficiency of governing stage in ultra-supercritical steam turbine based on rebound effect. Advanced Powder Technology, Vol. 33, 2022, pp. 1–10.
  39. Mohammadi, B. and A. S. Khoddami. Representative volume element-based simulation of multiple solid particles erosion of a compressor blade considering temperature effect. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 234, 2020, pp. 1173−1184.
  40. Budur, A.İ., İ. Özen, B. Öztürk, and H. Gedikli. Investigation on solid particle erosion performance of aluminum alloy materials for leading-edge slat. Tribology in Industry, Vol. 46, 2024, pp. 126–140.
  41. Vyas, A., J. Menghani, P. Patel, S. More, C. P. Paul, A. Patnaik, et al. Characterization and optimization of slurry erosion behavior of SS 316 at room temperature. Transactions of the Indian Institute of Metals, Vol. 74, 2021, pp. 839–849.
  42. Nomoto, H. Solid particle erosion analysis and protection design for steam turbines. Advances in steam turbines for modern power plants, Elsevier Inc, Amsterdam, Netherlands, 2017, pp. 219–239.
  43. Chen, T., G. Singh, P. Millington, and B. Haller. Reducing solid particle erosion on steam turbine stages. Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition GT2016, American Society of Mechanical Engineers (ASME), Seoul, South Korea, 2016, pp. 1–8.
  44. Sandra Leman, R., M. Pleasant Harare Zimbabwe, M. Masukume, and T. Mushiri. Finite element analysis on acid compressor expansion turbine: Case for Fertiliser Company. Proceedings of the International Conference on Industrial Engineering and Operations Management, IEOM Society International, Bandung, Indonesia, 2018, pp. 3173–3183.
  45. Hawas, M. N., H. Al-Gubri, and R. A. Mahmod. Improvement the erosion resistance of turbine blades using different material with different surface treatment. IOP Conference Series: Materials Science and Engineering, vol. 454, IOP Publishing, 2018, pp. 1–9.
  46. Leyzerovich, A. S. Steam turbines for modern fossil-fuel power plants, 1st ed., Rivere Publishers, New York, 2020.
  47. Zhang, J. and H. Liu. Effect of solid particles on performance and erosion characteristics of a high-pressure turbine. Energy, Vol. 272, 2023, pp. 1–12.
  48. Di, J., S. Wang, and Y. H. Xie. Investigation on the erosion characteristics of martensitic blade steel material 1Cr12W1MoV by micro-particle swarm with high velocity. Powder Technology, Vol. 345, 2019, pp. 111–128.
  49. Hu, P., L. Cao, J. Su, Q. Li, and Y. Li. Distribution characteristics of salt-out particles in steam turbine stage. Energy, Vol. 192, 2020, pp. 1–12.
  50. Cao, X., W. He, B. Liao, H. Zhou, H. Zhang, C. Tan, et al. Sand particle erosion resistance of the multilayer gradient TiN/Ti coatings on Ti6Al4V alloy. Surface and Coatings Technology, Vol. 365, 2019, pp. 214–221.
  51. Arabnejad, H., A. Mansouri, S. A. Shirazi, and B. S. McLaury. Development of mechanistic erosion equation for solid particles. Wear, Vol. 332–333, 2015, pp. 1044–1050.
  52. Melentiev, R., F. Fang, and S. K. R. Narala. Influence of different pretreatments on Ti-6Al-4V surface integrity and scratch-resistance of epoxy coating: Analysis of topography, microstructure, chemistry and wettability. Surface and Coatings Technology, Vol. 404, 2020, id. 126436.
  53. Alqallaf, J., N. Ali, J. A. Teixeira, and A. Addali. bSolid particle erosion behaviour and protective coatings for gas turbine compressor blades-A review. Processes, Vol. 8, 2020, pp. 1–42.
  54. Liang, N., Z. Yuan, J. Wang, J. Kang, and Y. Chu. Current situation and prospect of erosion wear. Journal of Physics: Conference Series, Vol. 1600, 2020, pp. 1–11.
  55. Miyazaki, N. Solid particle erosion of composite materials: A critical review. Journal of Composite Materials, Vol. 50, 2016, pp. 3175–3217.
  56. Fang, J. J., Y. J. Song, and Z. X. Li. Research on erosion resistance of TiB2 ceramic particle reinforced MMC coating. Advanced Materials Research, vol. 989–994, Trans Tech Publications Ltd, Bäch, Switzerland, 2014, pp. 270–275.
  57. Bousser, E., L. Martinu, and J. E. Klemberg-Sapieha. Solid particle erosion mechanisms of protective coatings for aerospace applications. Surface and Coatings Technology, Vol. 257, 2014, pp. 165–181.
  58. Mu, J., F. Gao, G. Cui, S. Wang, S. Tang, and Z. Li. A comprehensive review of anticorrosive graphene-composite coatings. Progress in Organic Coatings, Vol. 157, 2021, pp. 1–6.
  59. Kulyk, B., M. A. Freitas, N. F. Santos, F. Mohseni, A. F. Carvalho, K. Yasakau, et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Critical Reviews in Solid State and Materials Sciences, Vol. 47, 2022, pp. 309–355.
  60. Abid Ali, A. R. K. and A. S. Abd. Improve wear resistance by nano composite electro less coating for low alloy steel (Ni-P-graphene). Journal of Critical Reviews, Vol. 7, 2020, pp. 531–537.
  61. Wang, X., F. Tang, X. Qi, and Z. Lin. Mechanical, electrochemical, and durability behavior of graphene nano-platelet loaded epoxy-resin composite coatings. Composites Part B: Engineering, Vol. 176, 2019, id. 107103.
  62. Ding, R., W. Li, X. Wang, T. Gui, B. Li, P. Han, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. Journal of Alloys and Compounds, Vol. 764, 2018, pp. 1039–1055.
  63. Zamri, W. F. H. W., N. J. Suang, I. F. Mohamed, A. K. Ariffin, and M. F. M. Din. Modelling of nanoindentation of TiALN and TiN thin film coatings for automotive bearing. International Journal of Recent Technology and Engineering, Vol. 8, 2019, pp. 7194–7199.
  64. Wahab, J. A., M. J. Ghazali, A. Firdaus, and S. Baharin. Microstructure and mechanical properties of plasma sprayed Al2O3-13%TiO2 Ceramic Coating. MATEC Web of Conferences, Vol. 87, 2017, id. 02027.
  65. Bhosale, D. G., T. R. Prabhu, W. S. Rathod, M. A. Patil, and S. W. Rukhande. High temperature solid particle erosion behaviour of SS 316L and thermal sprayed WC-Cr3C2–Ni coatings. Wear, Vol. 456–457, 2020, id. 203520.
  66. Atiqah Badaluddin, N., W. W. Fathul Hakim Zamri, M. Faiz Md Din, I. Fadhlina Mohamed, M. Faiz Md Din, and J. A. Ghani. Coatings of cutting tools and their contribution to improve mechanical properties: a brief review. Article in International Journal of Applied Engineering Research, Vol. 13, 2018, pp. 11653–11664.
  67. Li, Z., Y. Li, J. Li, F. Li, H. Lu, J. Du, et al. Effect of NiCr content on the solid particle erosion behavior of NiCr-Cr3C2 coatings deposited by atmospheric plasma spraying. Surface and Coatings Technology, Vol. 381, 2020, id. 125136.
  68. Matikainen, V., H. Koivuluoto, and P. Vuoristo. A study of Cr3C2-based HVOF- and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance. Wear, 2020, pp. 446–447.
  69. Rao, K. S., K. G. Girisha, K. Jamuna, and G. C. Tejaswini. Erosion behaviour of HVOF sprayed SiC-WC-Cr3C2 multilayer coating on 304 stainless steel. Mater Today: Proceedings, Vol. 5, 2018, pp. 24685–24690.
  70. Yusoff, N. H. N., M. J. Ghazali, M. C. Isa, A. R. Daud, A. Muchtar, and S. M. Forghani. Optimization of plasma spray parameters on the mechanical properties of agglomerated Al2O3-13%TiO2 coated mild steel. Materials & Design, Vol. 39, 2012, pp. 504–508.
  71. Parmar, J., D. Kumar Sharma, P. Khyati, and P. Sweta. A review on galvanizing coating defects: causes and remedies. Jurnal Kejuruteraan, Vol. 34, 2022, pp. 535–542.
  72. Cernuschi, F., C. Guardamagna, S. Capelli, L. Lorenzoni, D. E. Mack, and A. Moscatelli. Solid particle erosion of standard and advanced thermal barrier coatings. Wear, Vol. 348–349, 2016, pp. 43–51.
  73. Matikainen, V., S. Rubio Peregrina, N. Ojala, H. Koivuluoto, J. Schubert, Š. Houdková, et al. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surface and Coatings Technology, Vol. 370, 2019, pp. 196–212.
  74. Cai, L. X., S. S. Wang, J. R. Mao, J. Di, Z. P. Feng, J. J. Zhang, et al. Study on erosion characteristics of solid particles in the first reheat stage blades of a supercritical steam turbine. Journal of Engineering for Gas Turbines and Power, Vol. 137, 2015, pp. 1–11.
  75. Matikainen, V., G. Bolelli, H. Koivuluoto, M. Honkanen, M. Vippola, L. Lusvarghi, et al. A study of Cr3C2-based HVOF- and HVAF-sprayed coatings: microstructure and carbide retention. Journal of Thermal Spray Technology, Vol. 26, 2017, pp. 1239–1256.
  76. Kumar, R. K., M. Kamaraj, S. Seetharamu, T. Pramod, and P. Sampathkumaran. Effect of spray particle velocity on cavitation erosion resistance characteristics of HVOF and HVAF processed 86WC-10Co4Cr hydro turbine coatings. Journal of Thermal Spray Technology, Vol. 25, 2016, pp. 1217–1230.
  77. Liang, Y., Y. Masayuki, and Y. Kenji. Evaluation and application of hard coatings for steam turbine. Proceedings of the ASME 2017 Power Conference Joint With ICOPE-17 POWER2017-ICOPE-17, American Society of Mechanical Engineers (ASME), Charlotte, NC, USA. New York, 2017, pp. 1–10.
  78. Yamamoto, K., Y. Tatsuhira, and Y. Iwai. The relationship between coating property and solid particle erosion resistance of aip-deposited tialn coatings with different al contents. Coatings, Vol. 11, 2021, id. 992.
  79. Chaudhary, K., P. Chaudhary, Urjasvita, P. Gaur, Anand, and P. Mobarsa. Thermal spray coating applications in tribology: recent case studies. Journal of Thermal Spray and Engineering, Vol. 4, 2024, pp. 87–93.
  80. Szczepankowski, A., R. Przysowa, J. Perczyński, and A. Kułaszka. Health and durability of protective and thermal barrier coatings monitored in service by visual inspection. Coatings, Vol. 12, 2022, pp. 1–19.
  81. Dzhurinskiy, D., A. Babu, P. Pathak, A. Elkin, S. Dautov, and P. Shornikov. Microstructure and wear properties of atmospheric plasma-sprayed Cr3C2-NiCr composite coatings. Surface and Coatings Technology, Vol. 428, 2021, id. 127990.
  82. Zhang, X., Z. Deng, H. Li, J. Mao, C. Deng, C. Deng, et al. Al2O3-modified PS-PVD 7YSZ thermal barrier coatings for advanced gas-turbine engines. npj Materials Degradation, Vol. 4, 2020, pp. 1–6.
  83. Alajmi, A. F. and M. Ramulu. Solid particle erosion of graphene-based coatings. Wear, Vol. 476, 2021, id. 1.
  84. Padmini, B. V., D. G. Bhosale, and H. B. Niranjan. A study of T11 boiler steel protection by cold sprayed Inconel 738 coating against high temperature erosion. Surfaces and Interfaces, Vol. 23, 2021, id. 101002.
  85. Yang, Q. and R. McKellar. Nanolayered CrAlTiN and multilayered CrAlTiN-AlTiN coatings for solid particle erosion protection. Tribology International, Vol. 83, 2015, pp. 12–20.
  86. Prasanna, N. D., C. Siddaraju, G. Shetty, M. R. Ramesh, and M. Reddy. Studies on the role of HVOF coatings to combat erosion in turbine alloys. Mater Today: Proceedings, Vol. 5, 2018, pp. 3130–3136.
  87. Ma, D., T. J. Harvey, Y. N. Zhuk, R. G. Wellman, and R. J. K. Wood. Cavitation erosion performance of CVD W/WC coatings. Wear, 2020, pp. 452–453.
  88. Zhuk, Y. Nanostructured CVD W/WC coating protects steam and gas turbine blades against water droplet erosion. ASME Turbo Expo 2022 Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers, Rotterdam, The Netherlands, New York, 2022, pp. 1–9.
  89. Yu, F., L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, et al. Complete long-term corrosion protection with chemical vapor deposited graphene. Carbon, Vol. 132, 2018, pp. 78–84.
  90. Kamari, E. and U. P. Gaur. Applications of thermal spray coatings: a review applications of thermal spray coatings: a review. Journal of Thermal Spray and Engineering, Vol. 4, 2024, pp. 106–114.
  91. Urbina, M., A. Rinaldi, S. Cuesta-Lopez, A. Sobetkii, A. E. Slobozeanu, P. Szakalos, et al. The methodologies and strategies for the development of novel material systems and coatings for applications in extreme environments- a critical review. Manufacturing Review (Les Ulis), Vol. 5, 2018, id. 1.
  92. Samsu, Z., N. K. Othman, M. S. Md Jamil, H. Yazid, and M. S. Alias. Effect of nano composite boron carbide on the mechanical and corrosion behaviour of aluminium matrix composite. Jurnal Kejuruteraan, Vol. 36, 2024, pp. 2603–2614.
  93. Kaplan, M., M. Uyaner, E. Avcu, Y. Yildiran Avcu, and A. C. Karaoglanli. Solid particle erosion behavior of thermal barrier coatings produced by atmospheric plasma spray technique. Mechanics of Advanced Materials and Structures, Vol. 26, 2019, pp. 1606–1612.
  94. Cao, L., C. Tu, P. Hu, and S. Liu. Influence of solid particle erosion (SPE) on safety and economy of steam turbines. Applied Thermal Engineering, Vol. 150, 2019, pp. 552–563.
  95. Presby, M. J. and B. J. Harder. Solid particle erosion of a plasma spray – physical vapor deposition environmental barrier coating in a combustion environment. Ceramics International, Vol. 47, 2021, pp. 24403–24411.
  96. Cai, L. X., J. R. Mao, S. Wang, J. Di, and Z. P. Feng. Experimental investigation on erosion resistance of iron boride coatings for steam turbines at high temperatures. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 229, 2015, pp. 636–645.
  97. Liu, S., H. Wu, S. Xie, Z. Yu, H. Luo, M. A. P. Yazdi, et al. Effect of stoichiometry conditions on the erosion and sliding wear behaviors of Cr3C2-NiCr coatings deposited by a novel ethanol-fueled HVOF process. Surface and Coatings Technology, Vol. 454, 2023, pp. 1–14.
  98. Wang, S., L. X. Cai, J. R. Mao, J. J. Zhang, and Y. T. Xu. Mechanisms of steam turbine blade particle erosion and crucial parameters for minimizing blade erosion. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 227, 2013, pp. 546–556.
  99. Lorenzo, P., S. Martina, and S. Bo. Dynamic behavior of metals and alloys designed for high-temperature applications. In: Meyers MA, editor. Dynamic Behavior of Materials, Elsevier, Amsterdam, 2024. pp. 339–372.
  100. Jindal, C., B. S. Sidhu, P. Kumar, and H. S. Sidhu. Performance of hardfaced/heat treated materials under solid particle erosion: A systematic literature review. Materials Today: Proceedings, vol. 50, Elsevier Ltd, 2021, pp. 629–639.
  101. Zhang Z., B. Yang, D. Zhang, and Y. Xie. Experimental investigation on the water droplet erosion characteristics of blade materials for steam turbine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, 2021, pp. 5103–5115.
Language: English
Submitted on: Jun 12, 2024
Accepted on: Jan 16, 2025
Published on: Mar 18, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Nur Syahirah Zainuddin, Wan Fathul Hakim W. Zamri, Mohd Zaidi Omar, Muhamad Faiz bin Md Din, Ahmad Afiq bin Pauzi, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.