Have a personal or library account? Click to login

References

  1. Andriy, A. S., Andriy, Y. V. (2009). Candida famata (Debaryomyces hansenii). In: Satyanarayana, T., Kunze, G. (eds.). Yeast Biotechnology: Diversity and Applications. Springer, Netherlands, pp. 85–111.
  2. Arena, M. P., Romano, A., Capozzi, V., Beneduce, L., Ghariani, M., Grieco, F., Lucas, P., Spano, G. (2011). Expression of Lactobacillus brevis IOEB 9809 tyrosine decarboxylase and agmatine deaminase genes in wine correlates with substrate availability. Lett. Appl. Microbiol.,53, 395–402.10.1111/j.1472-765X.2011.03120.x21740449
  3. Bae, S., Fleet, G. H., Heard, G. M. (2006). Lactic acid bacteria associated with wine grapes from several Australian vineyards. J. Appl. Microbiol., 100, 712–727.10.1111/j.1365-2672.2006.02890.x16553726
  4. Balkwill, D. L., Fredrickson, J. K., Romine, M. F. (2006). Sphingomonas and related genera. In: Dworkin, M. et al. (eds.). The Prokaryotes. Springer Verlag, New York, pp. 605–629.10.1007/0-387-30747-8_23
  5. Barata, A., Malfeito-Ferreira, M., Loureiro, V. (2012). The microbial ecology of wine grape berries. Int. J. Food Microbiol., 153, 253–259.10.1016/j.ijfoodmicro.2011.11.02522189021
  6. Barbe, J. C., De Revel, G., Joyeux, A., Bertrand, A., Lonvaud-Funel, A. (2001). Role of botrytized grape microorganisms in SO2 binding phenomena. J. Appl. Microbiol., 90, 34–42.10.1046/j.1365-2672.2001.01200.x11155120
  7. Bartowsky, E. J. (2009). Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbiol.,48, 149–156.10.1111/j.1472-765X.2008.02505.x19141041
  8. Beltran, G., Torija, M. J., Novo, M., Ferrer, N., Poblet, M., Guillamon, J. M., Rozes, N., Mas, A. (2002). Analysis of yeast populations during alcoholic fermentation: A six year follow-up study. Syst. Appl. Microbiol., 25, 287–293.10.1078/0723-2020-0009712353885
  9. Bokulich, N. A., Joseph, C. M., Allen, G., Benson, A. K., Mills, D. A. (2012). Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS One, 7(e), 36357.10.1371/journal.pone.0036357334136622563494
  10. Bulgari, D., Casati, P., Brusetti, L., Quaglino, F., Brasca, M., et al. (2009). Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. J. Microbiol., 47, 393–401.10.1007/s12275-009-0082-119763412
  11. Čadež, N., Zupan, J., Raspor, P. (2010). The effect of fungicides on yeast communities associated with grape berries. Federation of European Microbial Societies (FEMS) Yeast Res., 10, 619–630.10.1111/j.1567-1364.2010.00635.x20491940
  12. Capozzi, V., Ladero, V., Beneduce, L., Fernandez, M., Alvarez, M. A., Benoit, B., Laurent, B., Grieco, F., Spano, G. (2011). Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiol.,28, 434–439.10.1016/j.fm.2010.10.005
  13. Chavan, P., Mane, S., Kulkarni, G., Shaikh, S., Ghormade, V., Nerkar, D. P., Shouche, Y., Deshpande, M. V. (2009). Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiol., 26, 801–808.10.1016/j.fm.2009.05.005
  14. Clemente-Jimenez, J. M., Mingorance-Carzola, L., Martinez-Rodriguez, S., Las Heras-Vazquez, F. J., Rodriguez-Vico, F. (2004). Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol., 21, 149–155.10.1016/S0740-0020(03)00063-7
  15. Combina, M., Mercado, L., Borgo, P., Elia, A., Joofre, V., Ganga, A., Martinez, C., Catania, C. (2005). Yeasts associated to Malbec grape berries from Mendoza, Argentina. J. Appl. Microbiol., 98, 1055–1061.10.1111/j.1365-2672.2005.02540.x15836474
  16. Comitini, F., Ciani, M. (2008). Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Ann. Microbiol., 58, 489–493.10.1007/BF03175547
  17. Compant, S., Clément, C., Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem., 42, 669–678.10.1016/j.soilbio.2009.11.024
  18. Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H., Sessitsch, A. (2011). Endophytes of grapevine flowers, berries, and seeds: Identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb. Ecol., 62, 188–197.10.1007/s00248-011-9883-y21625971
  19. Cordero-Bueso, G., Arroyo, T., Serrano, A., Tello, J., Aporta, I., Vélez, M. D. (2011). Influence of the farming system and vine variety on yeast communities associated with grape-berries. Int. J. Food Microbiol., 145, 132–139.10.1016/j.ijfoodmicro.2010.11.04021185102
  20. Csoma, H., Sipiczki, M. (2008). Taxonomic reclassification of Candida stellata strains reveals frequent occurrence of Candida zemplinina in wine fermentation. FEMS Yeast Res., 8, 328–336.10.1111/j.1567-1364.2007.00339.x18179579
  21. Davenport, R. R. (1974). Micro ecology of yeasts and yeast like organisms associated with an English vineyard. Vitis, 13, 123–130.
  22. de Andrés-De Prado, R., Yuste-Rojas, M., Sort, X., Andrés Lacueva, C., Torres, M., Lamuela-Raventós, R. M. (2007). Effect of soil type on wines produced from Vitis vinifera L. cv. Grenache in commercial vineyards. J. Agric. Food Chem., 55 (3), 779–786.
  23. Deák, T. (2007). Handbook of Food Spoilage Yeasts. CRC Press. 352 pp.10.1201/9781420044942
  24. Delfini, C., Gaia, P., Schellino, R., Strano, M., Pagliara, A., Ambró, S. (2002). Fermentability of grape must after inhibition with dimethyl dicarbonate (DMDC). J. Agric. Food Chem., 50, 5605–5611.10.1021/jf0256337
  25. Fernández, M., Úbeda, J. F., Briones, A. I. (2000). Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. Int. J. Food Microbiol., 59, 29–36.10.1016/S0168-1605(00)00283-X
  26. Fleet, G. H. (1990). Growth of yeasts during wine fermentations. J. Wine Res., 1, 211–223.10.1080/09571269008717877
  27. Fleet, G. H. (2003). Yeast interactions and wine flavour. Int. J. Food Microbiol., 86, 11–22.10.1016/S0168-1605(03)00245-9
  28. Fleet, G. H., Prakitchaiwattana, C. J., Beh, A. L., Heard, G. M. (2002). The yeast ecology of wine grapes. In: Ciani, M. (Ed.). Biodiv. Biotech. Wine Yeasts, 1–17.
  29. Gonzáles, Á., Guillamón, J. M., Mas, A., Poblet, M. (2006). Application of molecular methods for routine identification of acetic acid bacteria. Int. J. Food Microbiol., 108, 141–146.10.1016/j.ijfoodmicro.2005.10.025
  30. Hierro N, Gonzales, A., Mas, A., Guillamón, J. M. (2006). Diversity and evolution of non-Saccharomyces yeast populations during wine fermentation: Effect of grape ripeness and cold maceration. FEMS Yeast Res.,6, 102–111.10.1111/j.1567-1364.2005.00014.x
  31. Ibarra, J. C., Ortiz-Gutiérrez, M., Alonso-Magana, P. (2004). Characterization of bromocresol green and resin as holographic film. Opt. Mater., 27, 567–572.10.1016/j.optmat.2004.06.003
  32. Jolly, N., Augustyn, O., Pretorius, I. (2003). The occurrence of non-Saccharomyces cerevisiae yeast species over three vintages in four vineyards and grape musts from four production regions of the Western Cape, South Africa. S. Afr. J. Enol. Vitic., 24, 35–42.10.21548/24-2-2640
  33. König, H., Unden, G., Fröhlich, J. (eds.) (2009). Biology of Microorganisms on Grapes, in Must and in Wine. Springer-Verlag, Berlin Heidelberg. 522 pp.10.1007/978-3-540-85463-0
  34. Kourkoutas, Y., Dimitropoulou, S., Kanellaki, M., Marchant, R., Nigam, P., Banat, I. M., Koutinas, A. (2002). High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresour. Technol., 82, 177–181.10.1016/S0960-8524(01)00159-6
  35. Kurtzman, C. P., Droby, S. (2001). Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Syst. Appl. Microbiol., 24, 395–399.10.1078/0723-2020-00045
  36. Lerm, E., Engelbrecht, L., Du Toit, M. (2010). Lactobacillus: The next generation of malolactic fermentation starter cultures: An overview. Food Bioprocess Tech., 4, 876-906.
  37. Li, S. S., Cheng, C., Li, Z., Chen, J. Y., Yan, B., Han, B. Z., Reeves, M. (2010). Yeast species associated with wine grapes in China. Int. J. Food Microbiol., 138, 85–90.10.1016/j.ijfoodmicro.2010.01.009
  38. Lonvaud-Funel, A. (1999). Lactic acid bacteria in the quality improvement and depreciation of wine. Ant. Van Leeuwen.,76, 317–331.10.1023/A:1002088931106
  39. Loureiro, V., Malfeito-Ferreira, M. (2003). Spoilage yeasts in the wine industry. Int. J. Food Microbiol., 86, 23–50.10.1016/S0168-1605(03)00246-0
  40. Marklein, G., Josten, M., Klanke, U., Müller, E., Horré, R., Maier, T., Wenzel, T., Kostrzewa, M., Bierbaum, G., Hoerauf, A., Sahl, H. G. (2009). Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J. Clin. Microbiol., 47 (9), 2912–2917.10.1128/JCM.00389-09273812519571014
  41. Martini, A. (1993). Origin and domestication of the wine yeast Saccharomyces cerevisiae. J. Wine Res., 4, 165–176.10.1080/09571269308717966
  42. Martini, A., Ciani, M., Scorzetti, G. (1996). Direct enumeration and isolation of wine yeasts from grape surfaces. Amer. J. Enol. Vitic., 47, 435–440.10.5344/ajev.1996.47.4.435
  43. Molnar, O., Prillinger, H. (2005). Analysis of yeast isolates related to Metschnikowia pulcherrima using the partial sequences of the large subunit rDNA and the actin gene; description of Metschnikowia andauensis sp. nov. Syst. Appl. Microbiol. 28, 717–726.10.1016/j.syapm.2005.05.00916261861
  44. Nisiotou, A. A., Rantsiou, K., Iliopoulos, V., Cocolin, L., Nychas, G. J. E. (2011). Bacterial species associated with sound and Botrytis-infected grapes from a Greek vineyard. Int. J. Food Microbiol., 145, 432–436.10.1016/j.ijfoodmicro.2011.01.01721315469
  45. Pan, W., Jussier, D., Terrade, N., Yada, R. Y., Mirade-Orduna, R. (2011). Kinetics of sugars, organic acids and acetaldehyde during simultaneous yeast-bacterial fermentations of white wine at different pH values. Food Res. Int.,44, 660–666.10.1016/j.foodres.2010.09.041
  46. Pavlovic, M., Mewes, A., Maggipinto, M., Schmidt, W., Messelhäußer, U., Balsliemke, J., Hörmansdorfer, S., Busch, U., Huber, I. (2014). MALDI-TOF MS based identification of food-borne yeast isolates. J. Microbiol. Methods, 106, 123–128.10.1016/j.mimet.2014.08.02125193440
  47. Peter, G., Tornai-Lehoczki, J., Suzuki, M., Dlauchy, D. (2005). Metschnikowia viticola sp. nov., a new yeast species from grape. Ant. Van Leeuwen., 87, 155–160.10.1007/s10482-004-2842-6
  48. Portillo, Mdel C., Franqučs, J., Araque, I., Reguant, C., Bordons, A. (2015). Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol., 219, 56–63.10.1016/j.ijfoodmicro.2015.12.002
  49. Prakitchaiwattana, C. J., Fleet, G. H., Heard, G. M. (2004). Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res., 4, 865–877.10.1016/j.femsyr.2004.05.004
  50. Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast, 16, 675–729.10.1002/1097-0061(20000615)16:8<;675::AID-YEA585>3.0.CO;2-B
  51. Quesada, M., Cenis, J. (1995). Use of random amplified polymorphic DNA in the characterization of wine yeasts. Amer. J. Enol. Vitic., 46 (2), 204–208.10.5344/ajev.1995.46.2.204
  52. Raspor, P., Milek, D. M., Polanc, J., Možina, S. S., Čadež, N. (2006). Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine growing region, Slovenia. Int. J. Food Microbiol., 109, 97–102.10.1016/j.ijfoodmicro.2006.01.017
  53. Rekah, Y., Shtienberg, D., Katan, J. (2000). Disease development following infection of tomato and basil foliage by airborne conidia of the soilborne pathogens Fusarium oxysporum f. sp. radicis-lycopersici and F. oxysporum f. sp. basilici. Phytopathology, 90, 1322–1329.10.1094/PHYTO.2000.90.12.1322
  54. Renouf, V., Claisse, O., Lonvaud-Funel, A. (2005). Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust. J. Grape Wine Res., 11, 316–327.10.1111/j.1755-0238.2005.tb00031.x
  55. Renouf, V., Claisse, O., Lonvaud-Funel, A. (2007). Inventory and monitoring of wine microbial consortia. Appl. Microbiol. Biotech., 75, 149–164.10.1007/s00253-006-0798-3
  56. Sabate, J., Cano, J., Esteve-Zarzoso, B., Guillamón, J. M. (2002). Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol. Res., 157, 267–274.10.1078/0944-5013-00163
  57. Singh, R., Gaur, R., Tiwari, S., Gaur, M. K. (2012). Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process. Braz. J. Microbiol., 43, 1042–1050.10.1590/S1517-83822012000300030
  58. Subden, R., Husnik, J., Van Twest, R., Van Der Merwe, G., Van Vuuren, H. (2003). Autochthonous microbial population in a Niagara Peninsula ice wine must. Food Res. Inter., 36, 747–751.10.1016/S0963-9969(03)00034-6
  59. Suh, S. O., Gibson, C. M., Blackwell, M. (2004). Metschnikowia chrysoperlae sp. nov., Candida picachoensis sp. nov. and Candida pimensis sp. nov., isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae). Int. J. Syst. Evol. Microbiol., 54, 1883–1890.10.1099/ijs.0.63152-015388758
  60. Torija, M. J., Rozes, N., Poblet, M., Guillamon, J. M., Mas, A. (2001). Yeast population dynamics in spontaneous fermentations: Comparison between two different wine-producing areas over a period of three years. Ant. Van Leeuwen., 79, 345–352.10.1023/A:1012027718701
  61. Tournas, V. H., Katsoudas, E. (2005). Mould and yeast flora in fresh berries grapes and citrus fruits. Int. J. Food Microbiol., 105, 11–17.10.1016/j.ijfoodmicro.2005.05.00216023239
  62. Towner, K. (2006). The Genus Acinetobacter. In: Dworkin, M. et al. (eds.) The Prokaryotes. Springer Verlag, New York, pp. 746–758.10.1007/0-387-30746-X_25
  63. Valero, E., Schuller, D., Cambon, B., Casal, M., Dequin, S. (2005). Dissemination and survival of commercial wine yeast in the vineyard: A large scale, three-year study. FEMS Yeast Res., 5, 959–969.10.1016/j.femsyr.2005.04.00715975857
  64. Van Veen, S. Q., Claas, E. C. J., Kuijper, E. J. (2010). High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J. Clin. Microbiol., 48 (3), 900–907.10.1128/JCM.02071-09283242920053859
  65. Velázquez, J. B., Longo, E., Cansado, J., Villa, T. G., Sieiro, C., Calo, P. (1991). Improvement of the alcoholic fermentation of grape juice with mixed cultures of Saccharomyces cerevisiae wild strains. Negative effect of Kloeckera apiculata. World J. Microbiol. Biotech., 7, 485–489.10.1007/BF0030337424425134
  66. Verginer, M., Leitner, E., Berg, G. (2010). Production of volatile metabolites by grape-associated microorganisms. J. Agric. Food Chem., 58, 8344–8350.10.1021/jf100393w20575540
  67. West, E. R., Cother, E. J., Steel, C. C., Ash, G. J. (2010). The characterization and diversity of endophytes of grapevine. Can. J. Microbiol., 56, 209–216.10.1139/W10-004
  68. Zarraonaindia, I., Owens, S. M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., Bokulich, N. A., Mills, D. A., Martin, G., Taghavi, S., van der Lelie, D., Gilbert, J. A. (2015). The soil microbiome influences grapevine-associated microbiota. mBio, 6 (2), e02527–14.10.1128/mBio.02527-14445352325805735
DOI: https://doi.org/10.1515/prolas-2017-0087 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 502 - 508
Submitted on: Oct 5, 2016
Accepted on: Nov 16, 2017
Published on: Jan 19, 2018
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2018 Attila Kántor, Ján Mareček, Eva Ivanišová, Margarita Terentjeva, Miroslava Kačániová, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.