Have a personal or library account? Click to login
Change in dust collection efficiency of liquid collectors in conditions of dedusting liquid recirculation Cover

Change in dust collection efficiency of liquid collectors in conditions of dedusting liquid recirculation

By: Janusz Krawczyk  
Open Access
|Dec 2017

References

  1. 1. Łopata, S. & Ocłoń, P. (2012). Modelling and optimizing operating conditions of heat exchanger with finned elliptical tubes. In L. Hector Juarez (Ed.), Fluid dynamics, computational modeling and applications (pp. 327–356). Rijeka, Croatia: InTech.
  2. 2. Ocłoń, P., Łopata, St., Nowak, M. & Benim, A. (2014). Numerical study on the effect of inner tube fouling on the thermal performance of high-temperature fin-and-tube heat exchanger. Prog. Comput. Fluid Dyn. 15(5), 290. DOI: 10.1504/PCFD.2015.072014.10.1504/PCFD.2015.072014
  3. 3. Brauer, H., Dyląg, M. & Talaga, J. (1989). Zur fluiddynamik von gerührten gas/feststoff/fltssigkeits-systemen. Chem. Ing. Tech. 61, 978–979 (in German).10.1002/cite.330611218
  4. 4. Brauer, H., Dyląg, M. & Talaga, J. (1996). Modellvorstellung zur entstehung der vollständigen suspension im rühbehälter. Forsch. Ingenieurwes 62, 239–245 (in German).
  5. 5. Dyląg, M. & Talaga, J. (1995). Modeling of multiphase flows. Chem. Process Eng. 16(3), 407–420.
  6. 6. Kabsch, M. (1976). Methods of dust wettability measurements. Wrocław, Poland: Wroclaw University of Technology Publisher (in Polish).
  7. 7. Nazarow, G., Krawczyk J., Blinicziew, W., Czagin, O. (2000). Influence of the design of the dust collecting apparatus on the limiting concentration of the irrigating suspension. Himia Himic. Tehnol. 43(2), 80–85 (in Russian).
  8. 8. Krawczyk, J. (2015). Development of wet methods of industrial gasses dedustind on the basis of experimental investigations. Cracow, Poland: Cacow University of Technology Publisher (in Polish).
  9. 9. Krawczyk J., Dyląg, M. & Rosiński, J. (1998). Vermin-derung des wasserverbrauchs bei der entstaubung. Gefahrst. Reinhalt. L. 59(1), 45–49.
  10. 10. Byeon, S.H., Lee, B.K. & Mohan, B.R. (2012). Removal of ammonia and particulate matter using a modified turbulent wet scrubbing system. Sep. Purif. Technol. 98, 221–229. DOI: 10.1016/j.seppur.2012.07.014.10.1016/j.seppur.2012.07.014
  11. 11. Mohan, Jain, R. & Meikap, B. (2008). Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber. Sep. Purif. Technol. 63 (2), 269–277. DOI: 10.1016/j.seppur.2008.05.006.10.1016/j.seppur.2008.05.006
  12. 12. Kim, H., Jung, C., Oh, S. & Lee K. (2001). Particle removal efficiency of gravitational wet scrubber considering diffusion, interception and impaction. Environ. Eng. Sci. 18 (2), 125–136. DOI: 10.1089/10928750151132357.10.1089/10928750151132357
  13. 13. Lim, K., Lee, S. & Park, H. (2006). Prediction for particle removal efficiency of a reverse jet scrubber. J. Aerosol. Sci. 37 (12), 1826–1839. DOI: 10.1016/j.jaerosci.2006.06.010.10.1016/j.jaerosci.2006.06.010
  14. 14. Mohan, B., Biswas, S. & Meikap, B. (2008). Performance characteristics of the particulates scrubbing in a counter-current spray-column. Sep. Purif. Technol. 61(1), 96–102. DOI: 10.1016/j.seppur.2007.09.018.10.1016/j.seppur.2007.09.018
  15. 15. Meikap, B. & Biswas, M. (2004). Fly-ash removal efficiency in a modified multi-stage bubble column scrubber. Sep. Purif. Technol. 36(3), 177–190. DOI: 10.1016/S1383-5866(03)00213-2.10.1016/S1383-5866(03)00213-2
  16. 16. Ebert, F. & Büttner, H. (1996). Recent investigations with nozzle scrubbers. Powder Technol. 86(1), 31–36. DOI: 10.1016/0032-5910(95)03034-4.10.1016/0032-5910(95)03034-4
  17. 17. Gemci, T. & Ebert, F. (1992). Prediction of the particle capture efficiency based on the combined mechanisms (turbulent diffusion, inertial impaction, interception, and gravitation) by a 3-D simulation of a wet scrubber. J. Aerosol. Sci. 23, 769–772. DOI: 10.1016/0021-8502(92)90525-Z.10.1016/0021-8502(92)90525-Z
  18. 18. Park, S., Jung, C., Jung, K., Lee, B. & Lee, K. (2005). Wet scrubbing of polydisperse aerosols by freely falling droplets. J. Aerosol. Sci. 36, 1444–1458. DOI: 10.1016/j.jaerosci.2005.03.012.10.1016/j.jaerosci.2005.03.012
  19. 19. Wang, Q., Chen, X. & Gong, X. (2013). The particle removing characteristics in a fixed valve tray column. Ind. Eng. Chem. Res. 52(9), 3441–3452. DOI: 10.1021/ie3027422.10.1021/ie3027422
  20. 20. Krawczyk, J. (1996). Wet dedusting, heat and mass exchange in apparatuses of intense performance. Moscow, Russia: Russian National Academy Publisher.
  21. 21. Talaga, J., Brauer, H. & Dyląg, M. (1996). Modellvorstellung zur entstehung der vollständigen suspension im rühbehälter. Forsch. Ingenieurwes 62(9), 239–246. DOI: 10.1007/BF02601430.10.1007/BF02601430
  22. 22. Löffler, F. (1988). Staubabscheiden. New York, USA: Georg Thieme Verlag.
  23. 23. Krawczyk, J., Czagin, O. & Postnikowa, I. (2010). The change of fractional dedusting efficiency with increase of liquid concentration for different wettability dusts. In proceedings of IX International Conference “Theoretical Basics of Energy and Resource-saving Processes, Equipment and Environmentally Safe Industries”, 28–30 September 2010 (pp. 121–128). Ivanovo, Russia: Ivanovo Stte University of Chemistry and Technology Publisher (in Polish).
  24. 24. Krawczyk, J. & Pikoń, J. (1986). Abscheider mit zellen-ftllkorpern. Staub. Reinhalt. Luft 1, 22–25 (in German).
  25. 25. Dłuska, E., Hubacz, R., Wroński, S., Kamieński, J., Dyląg, M. & Wójtowicz, R. (2007). The influence of helical flow on water fuel emulsion preparation. Chem. Eng. Commun. 194 (10), 1271–1286. DOI: 10.1080/00986440701293959.10.1080/00986440701293959
  26. 26. Krawczyk, J., Roszak, Z. & Wisła H. (2006) Dedusting in bubbling and drop zones of periodic apparatus. Chem. Enginee. Equip. 45(37), 99–101 (in Polish).
  27. 27. Wisła, H. (2009). Wet dedusting for full liquid recirculation. Doctoral dissertation, Cracow University of Technology, Cracow, Poland (in Polish).
  28. 28. Krawczyk, J., Maszek, L., Mieszkowski, A. & Roszak, Z. (2008). Wet dust extraction in the condition of total liquid recirculation. Czasopismo Techniczne – Technical Transactions 2-M/2008 (2), 143–154 (in Polish).
  29. 29. Krawczyk, J., Czagin, O. & Postnikowa, I. (2012). Changes in the dust capture during the impact aerosol of the liquid surface. Czasopismo Techniczne – Technical Transactions 2-M/2012 (6), 207–214 (in Polish).
  30. 30. Szatko, W., Blinicziew, W. & Krawczyk, J. (2011). Comparison of mathematical models describing changes of the suspension absorption capacity and thermal resistance of the sludge. In G. Wozny & Ł. Hady (Eds.), Process Engineering and Chemical Plant Design 2011, (pp. 103–113). Berlin: Universitätsverlag der TU Berlin.
  31. 31. Wójtowicz, R., Lipin, A.A. & Talaga, J. (2014). On the possibility of using of different turbulence models for modeling flow hydrodynamics and power consumption in mixing vessels with turbine impellers. Theor. Found. Chem. Eng. 48 (4), 360–375. DOI: 10.1134/S0040579514020146.10.1134/S0040579514020146
  32. 32. Kamieński, J. & Wójtowicz, R. (2001). Drop size during dispersion of two immiscible liquids in a vibromixer. Chem. Process Eng. 22(3C), 597–602 (in Polish).
  33. 33. Wójtowicz, R. (2014). Choice of an optimal agitated vessel for the drawdown of floating solids. Ind. Eng. Chem. Res. 53 (36), 13989–14001. DOI: 10.1021/ie500604q, 53 13989–14001.10.1021/ie500604q,531398914001
Language: English
Page range: 1 - 7
Published on: Dec 29, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Janusz Krawczyk, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.