Have a personal or library account? Click to login

References

  1. 1. Turkiewicz, A. (2005). Doctoral dissertation - Some problems of degradation water-dispersion polymer drilling fluids (in Polish). AGH im. Stanisława Staszica w Krakowie.
  2. 2. Romero-Bastida, C.A., Bello-Perez, L.A., Garcia, M.A., Martino, M.N., Solorza-Feria, J. & Zaritzky, N.E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatization from non-conventional sources of starches. Carbohyd. Polym., 60, 235–244. DOI: 10.1016/j.carbpol.2005.01.004.10.1016/j.carbpol.2005.01.004
  3. 3. Sindhu, M., Brahmakumar, M. & Emilia Abgraham, T. (2006). Microstructural imaging and characterization of the mechanical, chemical, thermal and swelling properties of starch-chitosan blend films. Biopolym 82, 176–187. DOI: 10.1002/bip.20480.10.1002/bip.2048016489584
  4. 4. Kittipongpatana, I.S., Chaichanasak, N., Kanchongkittipoan, S., Panturat, A., Taekanmark, T. & Kittpongpatana, N. (2006). An aqueous film-coating formulation based on sodium carboxymethyl mungbean starch. Starch 58, 587–589. DOI: 10.1002/star.200600528.10.1002/star.200600528
  5. 5. Silva, D.A., de Paula, R.C.M., Feitosa, J.P.A., de Brito, A.C.F., Maciel, J.S., Paula, H.C.B. (2004). Carboxymethylation of cashew tree exudate polysaccharide. Carbohydr. Polym. 58, 163–171. DOI: 10.1016/j.carbpol.2004.06.034.10.1016/j.carbpol.2004.06.034
  6. 6. Assaad, E. & Mateescu, M.A. (2010). The influence of protonation ratio on properties of carboxymethyl starch excipient at various substitution degrees: Structural insights and drug release kinetics. Inter. J. Pharm. 394, 75–84. DOI: 10.1016/j.ijpharm.2010.04.037.10.1016/j.ijpharm.2010.04.03720435114
  7. 7. Spychaj T., Wilpiszewska K., Zdanowicz M. (2013). Medium and high substituted carboxymethyl starch: Synthesis, characterization and application. Starch 65, 22–33. DOI: 10.1002/star.201200159.10.1002/star.201200159
  8. 8. Malinowska-Pańczyk, E., Sztuka, K. & Kołodziejska, I. (2010). Antimicrobial materials as components of the film based on biodegradable natural polimer (in Polish). Polimery 55, 627–633.10.14314/polimery.2010.627
  9. 9. Talja, R.A., Helen, H., Roos, Y.H. & Jouppila, K. (2007). Efect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr. Polym. 67, 288–295. DOI: 10.1016/j.carbpol.2006.05.019.10.1016/j.carbpol.2006.05.019
  10. 10. Wilpiszewska, K., Antosik, A.K. & Spychaj, T. (2015). Novel hydrophilic carboxymethyl starch/montmorylonite nanocomposite films. Carbohydr. Polym., 128, 82–89. DOI: 10.1016/j.carbpol.2015.04.023.10.1016/j.carbpol.2015.04.02326005142
  11. 11. Almasi, H., Ghanbarzadeh, B., Entezami, A.A. (2010). Physicochemical properties of starch-CMC-nanoclay biodegradable films. Inter. J. Bio. Macro. 46, 1–5. DOI:10.1016/j.ijbiomac.2009.10.001.10.1016/j.ijbiomac.2009.10.00119828115
  12. 12. Kalemba, D. (1998). Antibacterial and antifungal properties of essential oils (in Polish). Post. Mikrobiol. 38, 165–184.
  13. 13. Chen, W., Liu, Y., Li, M., Mao, J., Zhang, L., Huang, R., Jin, X. & Ye, L. (2015). Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharm. Sci. 127(3), 332–338. DOI: 10.1016/j.jphs.2015.01.00810.1016/j.jphs.2015.01.008
  14. 14. Swift, K.A.D. (2004). Catalytic Transformations of the Major Terpene Feedstocks. Top. Cat. 27, 143–155. DOI: 10.1023/B:TOCA.0000013549.60930.da.10.1023/B:TOCA.0000013549.60930.da
  15. 15. Thomas, A.F. (1989). Limonene. Nat. Prod. Rep. 3, 291–309. DOI: 10.1039/NP9890600291.10.1039/NP9890600291
  16. 16. Wang, C.Y., Bai, X.Y. & Wang, C.H. (2014). Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development. Am. J. Chin. Med. 42, 543–559. DOI: 10.1142/S0192415X14500359.10.1142/S0192415X14500359
  17. 17. Márcio, R.V., Santos Flávia, V. & Moreira B.P. (2011). Cardiovascular effects of monoterpenes: a review. Rev. Bras. Farmacogn. 21, 764–771. DOI: 10.1590/S0102-695X2011005000119.10.1590/S0102-695X2011005000119
  18. 18. Suryawanshi, J.A.S. (2011). An overview of Citrus aurantium used in treatment of various diseases. Afr. J. Plant Sci. 5, 390–395.
  19. 19. Iversena, M., Finstada, B., McKinleyc, R.S. & Eliassenb, R.A. 2003. The efficacy of metomidate, clove oil, Aqui-™ and Benzoak® as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity. Aquacult. 221, 549–566. DOI: 10.1016/S0044-8486(03)00111-X.10.1016/S0044-8486(03)00111-X
  20. 20. Bhowmik, D., Kumar, K.P.S. & Yadav, A. (2012). Recent Trends in Indian Traditional Herbs Syzygium Aromaticum and its Health Benefits. J. Pharm. Phytochem. 1(1), 13–22.
  21. 21. Różański, H. (2016), Akademia Medyczna im. K. Marcinkowskiego, Zakład Historii Nauk Medycznych, Poznań: Essential oils as an alternative to antibiotic growth promoters and coccidiostats (in Polish). luskiewnik.strefa.pl. [2016-04-15].
  22. 22. Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M. (2008). Biological effects of essential oils – A review. Food Chem. Toxic. 46, 446–475. DOI: 10.1016/j.fct.2007.09.106.10.1016/j.fct.2007.09.10617996351
  23. 23. Chaieb, K., Hajlaoui, H., Zmantar, T. & Kahla-Nakbi, A.B. (2007). The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother. Res. 21, 501–506. DOI: 10.1002/ptr.2124.10.1002/ptr.212417380552
Language: English
Page range: 88 - 92
Published on: Jul 8, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Ewa Drewnowska, Adrian Krzysztof Antosik, Agnieszka Wróblewska, Zbigniew Czech, Katarzyna Wilpiszewska, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.