Adlakha, V. G. (1989). A classified bibliography of research on stochastic PERT networks: 1966–1987. Information Systems and Operational Research, 27(3), pp. 272–296.
Crandall, K., & Hajdu, M. (1994). A CPM költségtervezési feladat “legrosszabb” megoldása. Közlekedéstudományi szemle, 44(5), pp. 173–176. (In Hungrian).
Dinic, E. A. (1990). The fastest algorithm for the PERT problem with AND- and OR-nodes (the new product-new technology problem). In: Kannan, R., & Pulleyblank, W. R. (eds.). Proceedings of the International Conference on Integer Programming and Combinatorial Optimization. University of Waterloo Press, Waterloo, ON, Canada, pp. 185–187.
Elmaghraby, S. E. (1989). The estimation of some network parameters in PERT model of activity networks: Review and critique. In: Slowinski, R., & Weglarz J. (eds.). Advances in Project Scheduling. Elsevier, Amsterdam, pp. 371–432.
Farnum, N. R., & Stanton, L. W. (1987). Some results concerning the estimation of beta distribution parameters in PERT. Journal of the Operations Research Society, 38, pp. 287–290.
Fondahl, J. W. (1961). A Non-Computer Approach to the Critical Path Method for the Construction Industry, Technical Report #9. Department of Civil Engineering, Stanford University, Stanford, CA.
Fondahl, J. W. (1987). The history of modern project management: Precedence diagramming method: Origins and early developments. Project Management Journal, 18(2), pp. 33–36.
Francis, A., & Miresco, E. T. (2000). Decision support for project management using a chronographic approach. In: Proceedings of the 2nd International Conference on Decision Making in Urban and Civil Engineering Grand Hôtel Mercure Saxe-Lafayette, 20–22 November 2000, Lyon, France, pp. 845–856. Published jointly by INSA-Lyon, ESIGEC Chambery, ENTPE-Lyon and ETS Canada. [ISBN 2868341179].
Francis, A., & Miresco, E. T. (2002). Decision support for project management using a chronographic approach. Journal of Decision Systems, 11(3–4), pp. 383–404.
Gillies, D. W. (1993). Algorithms to schedule tasks with AND/OR precedence constraints. PhD thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL.
Hahn, E. D. (2008). Mixture densities for project management activity times: A robust approach to PERT. European Journal of Operational Research, 188, pp. 450–459.
Hajdu, M. (1993). An algorithm for solving the cost optimization problem in precedence diagramming. Periodica Politechnica Civil Engineering, 37(3), pp. 231–247.
Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management. Kluwer Academic Publishers, Dordrecht, London, New York. 352 p. [ISBN:0-7923-4309-3].
Hajdu, M. (2015a). One relation to rule them all: The point-to-point precedence relation that substitutes the existing ones. In: Froese, T. M., Newton, L., Sadeghpour, F., & Vanier, D. J. (eds.). Proceedings of ICSC15: The Canadian Society for Civil Engineering 5th International/11th Construction Specialty Conference. 7–10 June. University of British Columbia, Vancouver, BC, Canada. doi: 10.14288/1.0076408.
Hajdu, M. (2015b). History and some latest development of precedence diagramming method. Organization, Technology and Management in Construction: An International Journal, 7(2), pp. 1302–1314. doi: 10.5592/otmcj.2015.2.5.
Hajdu, M. (2015d). Precedence diagramming method: Some latest developments. In: Keynote Presentation on the Creative Construction Conference, 21–24 June, 2015. Krakow, Poland.
Hajdu, M. (2016a). Sixty years of project planning: History and future. In: Conference Proceedings of People, Buildings and Environment 2016, An International Scientific Conference, Luhačovice, Czech Republic, pp. 230–242. Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic [ISSN: 1805-6784].
Hajdu, M. (2016b). PDM time analysis with continuous and point-to-point relations: Calculations using an artificial example. Procedia Engineering, 164, pp. 57–67. doi: 10.1016/j.proeng.2016.11.592.
Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis. Journal of the Royal Statistical Society: Series D (The Statistician), 46, pp. 387–398. doi: 10.1111/1467-9884.00091.
Kelley, J. E., & Walker, M. E. (1959). Critical path planning and scheduling. In: Proceedings of the Eastern Joint Computer Conference, 1–3 December 1959 Boston, MA, pp. 160–173.
Kim, S. (2012). CPM schedule summarizing function of the beeline diagramming method. Journal of Asian Architecture and Building Engineering, 11(2), pp. 367–374.
Lucko, G. (2009). Productivity Scheduling Method: Linear schedule analysis with singularity functions. Journal of Construction Engineering and Management, 135(4), pp. 246–253.
Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar W. (1959). Application of a technique for a research and development program evaluation. Operations Research, 7, pp. 646–669.
Meyer, W. L., & Shaffer, L. R. (1963). Extension of the Critical Path Method Through the Application of Integer Programming, Technical Report. Department of Civil Engineering, University of Illinois, Urbana, IL.
Mohan, S., Gopalakrishnan, M., Balasubramanian, H., & Chandrashekar, A. (2007). A lognormal approximation of activity duration in PERT using two time estimates. Journal of the Operational Research Society, 58, pp. 827–831.
Premachandra, I. M., & Gonzales, L. (1996). A simulation model solved the problem of scheduling drilling rigs at Clyde dam. Interfaces, 26(2), pp. 80–91.
Roy, G. B. (1959), Théorie des Graphes: Contribution de la théorie des graphes á l1 étude de certains problémes linéaries. In: Comptes rendus des Séances de l1 Acedémie des Sciences. séence du Avril, Gauthier-Villars, 1959, pp. 2437–2449.
Roy, G. B. (1960), Contribution de la théorie des graphes à l’étude de certains problems d’ordonnancement. In: Comptes rendus de la 2ème conférence internationale sur la recherché opérationnelle, Aix-en-Provence. English Universities Press, Londres, pp. 171–185.
Trietsch, D., Mazmanyan, L., Gevorgyan, L., & Baker, K. R. (2012). Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation. European Journal of Operations Research, 216(2), pp. 386–396.
Vanhoucke, M., & Coelho, J. (2016). An approach using SAT solvers for the RCPSP with logical constraints. European Journal of Operations Research, 249(2), pp. 577–591.
Yao, M., & Chu, W. (2007). A new approximation algorithm for obtaining the probability distribution function for project completion time. Computers and Mathematics with Applications, 54, pp. 282–295.