Have a personal or library account? Click to login
Phosphorus forms in the sediment of seagrass meadows affected mainly by fungi rather than bacteria: a preliminary study based on 31P-NMR and high-throughput sequencing Cover

Phosphorus forms in the sediment of seagrass meadows affected mainly by fungi rather than bacteria: a preliminary study based on 31P-NMR and high-throughput sequencing

Open Access
|Nov 2020

References

  1. Baldwin, D.S. (2013). Organic phosphorus in the aquatic environment. Environ. Chem. 10(6): 439–454. DOI: 10.1071/EN13151.
  2. Benitez-Nelson, C. R., O'Neill, L., Kolowith, L.C., Pellechia, P. & Thunell, R. (2004). Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol. Oceanogr. 49(5): 1593–1604. DOI: 10.4319/lo.2004.49.5.1593.
  3. Bhattacharyya, P.N. & Jha, D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28(4): 1327–1350. DOI: 10.1007/s11274-011-0979-9.
  4. Bramha, S.N., Mohanty, A.K., Padhi, R.K., Panigrahi, S.N. & Satpathy, K.K. (2014). Phosphorus speciation in the marine sediment of Kalpakkam coast, southeast coast of India. Environ. Monit. Assess. 186(10): 6003–6015. DOI: 10.1007/s10661-014-3836-0.
  5. Brodersen, K.E., Koren, K., Mosshammer, M., Ralph, P.J., Kuhl, M. et al. (2017). Seagrass-mediated phosphorus and iron solubilization in tropical sediments. Environ. Sci. Technol. 51(24): 14155–14163. DOI: 10.1021/acs.est.7b03878.
  6. Brodersen, K.E., Siboni, N., Nielsen, D.A., Pernice, M., Ralph, P.J. et al. (2018). Seagrass rhizosphere microenvironment alters plant-associated microbial community composition. Environ. Microbiol. 20(8): 2854–2864. DOI: 10.1111/1462-2920.14245.
  7. Cade-Menun, B.J. (2005). Characterizing phosphorus in environmental and agricultural samples by P-31 nuclear magnetic resonance spectroscopy. Talanta. 66(2): 359–371. DOI: 10.1016/j.talanta.2004.12.024.
  8. Cade-Menun, B.J. (2015). Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma. 257–258: 102–114. DOI: 10.1016/j.geoderma.2014.12.016.
  9. Cade-Menun, B.J. & Liu, C.W. (2014). Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: A review of sample preparation and experimental parameters. Soil Sci. Soc. Am. J. 78(1): 19–37. DOI: 10.2136/sssaj2013.05.0187dgs.
  10. Cucio, C., Engelen, A.H., Costa, R. & Muyzer, G. (2016). Rhizosphere microbiomes of european seagrasses are selected by the plant, but are not species specific. Front. Microbiol. 7: 440. DOI: 10.3389/fmicb.2016.00440.
  11. Dell'Anno, A. & Danovaro, R. (2005). Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309(5744): 2179–2179. DOI: 10.1126/science.1117475.
  12. Ding, S., Bai, X., Fan, C. & Zhang, L. (2010). Caution needed in pretreatment of sediments for refining phosphorus-31 nuclear magnetic resonance analysis: Results from a comprehensive assessment of pretreatment with ethylenediaminetetraacetic acid. J. Environ. Qual. 39(5): 1668–1678. DOI: 10.2134/jeq2009.0396.
  13. Dipta, B., Bhardwaj, S., Kaushal, M., Kirti, S. & Sharma, R. (2019). Obliteration of phosphorus deficiency in plants by microbial interceded approach. Symbiosi. 78(2): 163–176. DOI: 10.1007/s13199-019-00600-y.
  14. Duarte, C.M. & Chiscano, C.L. (1999). Seagrass biomass and production: A reassessment. Aquat. Bot. 65(1–4): 159–174. DOI: 10.1016/S0304-3770(99)00038-8.
  15. Ettinger, C.L., Voerman, S.E., Lang, J.M., Stachowicz, J.J. & Eisen, J.A. (2017). Microbial communities in sediment from Zostera marina patches, but not the Z. marina leaf or root microbiomes, vary in relation to distance from patch edge. Peerj. 5: e3246. DOI: 10.7717/peerj.3246.
  16. Fraser, M.W., Gleeson, D.B., Grierson, P.F., Laverock, B. & Kendrick, G.A. (2018). Metagenomic evidence of microbial community responsiveness to phosphorus and salinity gradients in seagrass sediments. Front. Microbiol. 9: 1703. DOI: 10.3389/fmicb.2018.01703.
  17. Garcia-Martinez, M., Lopez-Lopez, A., Calleja, M.L., Marba, N. & Duarte, C.M. (2009). Bacterial community dynamics in a seagrass Posidonia oceanica meadow sediment. Estuaries Coasts 32(2): 276–286. DOI: 10.1007/s12237-008-9115-y.
  18. Huang, X., Huang, L., Li, Y., Xu, Z., Fong, C.W. et al. (2006). Main seagrass beds and threats to their habitats in the coastal sea of South China. Chin. Sci. Bull. 51: 136–142. DOI: 10.1007/s11434-006-9136-5.
  19. Hurtado-McCormick, V., Kahlke, T., Petrou, K., Jeffries, T., Ralph, P.J. et al. (2019). Regional and microenvironmental scale characterization of the Zostera muelleri seagrass microbiome. Front. Microbiol. 10: 1011. DOI: 10.3389/fmicb.2019.01011.
  20. Jensen, H.S., McGlathery, K.J., Marino, R. & Howarth, R.W. (1998). Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnol. Oceanogr. 43(5): 799–810. DOI: 10.4319/lo.1998.43.5.0799.
  21. Jiang, Y.F., Ling, J., Wang, Y.S., Chen, B., Zhang, Y.Y. et al. (2015). Cultivation-dependent analysis of the microbial diversity associated with the seagrass meadows in Xincun Bay, South China Sea. Ecotoxicology. 24(7–8): 1540–1547. DOI: 10.1007/s10646-015-1519-4.
  22. Khan, M.S., Zaidi, A. & Wani, P.A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture – A review. Agron. Sustainable Dev. 27(1): 29–43. DOI: 10.1051/agro:2006011.
  23. Komatsu, T., Umezawa, Y., Nakakoka, M., Supanwanid, C. & Kanamoto, Z. (2004). Water flow and sediment in Enhalus acoroides and other seagrass beds in the Andaman Sea, off Khao Bae Na, Thailand. Coast. Mar. Sci. 29(1): 63–68. DOI: 10.15083/00040824.
  24. Koukol, O., Novak, F. & Hrabal, R. (2008). Composition of the organic phosphorus fraction in basidiocarps of saprotrophic and mycorrhizal fungi. Soil Biol. Biochem. 40(9): 2464–2467. DOI: 10.1016/j.soilbio.2008.04.021.
  25. Li, W., Joshi, S.R., Hou, G., Burdige, D.J., Sparks, D.L. et al. (2015). Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P-NMR, and X-ray absorption fine structure spectroscopy. Environ. Sci. Technol. 49(1): 203–211. DOI: 10.1021/es504648d.
  26. Li, Y., Zhang, J., Zhang, J., Xu, W. & Mou, Z. (2019). Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a eutrophic lake. Int. J. Environ. Res. Public Health. 16(12): 2141. DOI: 10.3390/ijerph16122141.
  27. Liu, J., Wang, H., Yang, H., Ma, Y. & Cai, O. (2009). Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environ. Pollut. 157(1): 49–56. DOI: 10.1016/j.envpol.2008.07.031.
  28. Liu H., Pan F., Han X., Song F., Zhang Z. et al. (2019). Response of soil fungal community structure to long-term continuous soybean cropping. Front. Microbiol. 9: 3316. DOI: 10.3389/fmicb.2018.03316.
  29. McRoy, C.P., Nebert, M. & Barsdate, R.J. (1972). Phosphorus cycling in an eelgrass Zostera marina L.) ecosystem. Limnol. Oceanogr. 17(1): 58–67. DOI: 10.4319/lo.1972.17.1.0058.
  30. Mercl, F., Garcia-Sanchez, M., Kulhanek, M., Kosnar, Z., Szakova, J. et al. (2020). Improved phosphorus fertilization efficiency of wood ash by fungal strains Penicillium sp. PK112 and Trichoderma harzianum OMG08 on acidic soil. Appl. Soil Ecol. 147: 103360. DOI: 10.1016/j.apsoil.2019.09.010.
  31. Nielsen, O.I., Koch, M.S. & Madden, C.J. (2007). Inorganic phosphorus uptake in a carbonate-dominated seagrass ecosystem. Estuaries Coasts. 30(5): 827–839. DOI: 10.1007/bf02841337.
  32. Pagès, A., Welsh, D.T., Robertson, D., Panther, J.G., Schäfer, J. et al. (2012). Diurnal shifts in co-distributions of sulfide and iron(II) and profiles of phosphate and ammonium in the rhizosphere of Zostera capricorni Estuar. Coast Shelf Sci. 115: 282–290. DOI: 10.1016/j.ecss.2012.09.011.
  33. Paytan, A., Cade-Menun, B.J., McLaughlin, K. & Faul, K.L. (2003). Selective phosphorus regeneration of sinking marine particles: Evidence from 31P-NMR. Mar. Chem. 82(1–2): 55–70. DOI: 10.1016/s0304-4203(03)00052-5.
  34. Prasad, M.B.K. & Ramanathan, A.L. (2010). Characterization of phosphorus fractions in the sediments of a tropical intertidal mangrove ecosystem. Wetlands Ecol. Manage. 18(2): 165–175. DOI: 10.1007/s11273-009-9157-3.
  35. Prüter, J., Leipe, T., Michalik, D., Klysubun, W. & Leinweber, P. (2019). Phosphorus speciation in sediments from the Baltic Sea, evaluated by a multi-method approach. J. Soils Sediments 20(3): 1676–1691. DOI: 10.1007/s11368-019-02518-w.
  36. Reitzel, K., Ahlgren, J., Gogoll, A., Jensen, H.S. & Rydin, E. (2006). Characterization of phosphorus in sequential extracts from lake sediments using 31P-nuclear magnetic resonance spectroscopy. Can. J. Fish. Aquat. Sci. 63(8): 1686–1699. DOI: 10.1139/f06-070.
  37. Richardson, A.E., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A. et al. (2011). Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil. 349(1–2): 121–156. DOI: 10.1007/s11104-011-0950-4.
  38. Sannigrahi, P. & Ingall, E. (2005). Polyphosphates as a source of enhanced P fluxes in marine sediments overlain by anoxic waters: Evidence from 31P-NMR. Geochem. Trans. 6(3): 52–59. DOI: 10.1063/1.1946447.
  39. Schneider, K.D., Cade-Menun, B.J., Lynch, D.H. & Voroney, R.P. (2016). Soil phosphorus forms from organic and conventional forage fields. Soil Sci. Soc. Am. J. 80(2): 328–340. DOI: 10.2136/sssaj2015.09.0340.
  40. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. & Gobi, T.A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus. 2: 587. DOI: 10.1186/2193-1801-2-587.
  41. Shinohara, R., Imai, A., Kawasaki, N., Komatsu, K., Kohzu, A. et al. (2012). Biogenic phosphorus compounds in sediment and suspended particles in a shallow eutrophic lake: A 31P-nuclear magnetic resonance 31P-NMR) study. Environ. Sci. Technol. 46(19): 10572–10578. DOI: 10.1021/es301887z.
  42. Sun, W., Qian, X., Gu, J., Wang, X. J., Li, Y. et al. (2017). Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean Glycine max growth and indigenous bacterial community diversity. Can. J. Microbiol. 63(5): 392–401. DOI: 10.1139/cjm-2016-0758.
  43. Tapia-Torres, Y., Rodríguez-Torres, M.D., Elser, J.J., Islas, A., Souza, V. et al. (2016). How to live with phosphorus scarcity in soil and sediment: Lessons from bacteria. Appl. Environ. Microbiol. 82(15): 4652–4662. DOI: 10.1128/AEM.00160-16.
  44. Teymouri, M., Akhtari, J., Karkhane, M. & Marzban, A. (2016). Assessment of phosphate solubilization activity of rhizobacteria in mangrove forest. Biocatal. Agric. Biotechnol. 5: 168–172. DOI: 10.1016/j.bcab.2016.01.012.
  45. Turner, B.L., Mahieu, N. & Condron, L.M. (2003). Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Sci. Soc. Am. J. 67(2): 497–510. DOI: 10.2136/sssaj2003.4970.
  46. Ugarelli, K., Chakrabarti, S., Laas, P. & Stingl, U. (2017). The seagrass holobiont and its microbiome. Microorganisms. 5: 81. DOI: 10.3390/microorganisms5040081.
  47. Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A. & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fertil. Soils. 30(5–6): 460–468. DOI: 10.1007/s003740050024.
  48. Wahyudi, A.A.J., Rahmawati, S., Prayudha, B., Iskandar, M.R. & Arfianti, T. (2016). Vertical carbon flux of marine snow in Enhalus acoroides-dominated seagrass meadows. Reg. Stud. Mar. Sci. 5: 27–34. DOI: 10.1016/j.rsma.2016.01.003.
  49. Wainwright, B.J., Zahn, G.L., Zushi, J., Lee, N.L.Y., Ooi, J.L.S. et al. (2019). Seagrass-associated fungal communities show distance decay of similarity that has implications for seagrass management and restoration. Ecol. Evol. 9(19): 11288–11297. DOI: 10.1002/ece3.5631.
  50. Watson, S.J., Cade-Menun, B.J., Needoba, J.A. & Peterson, T.D. (2018). Phosphorus forms in sediments of a river-dominated estuary. Front. Mar. Sci. 5: 302. DOI: 10.3389/fmars.2018.00302.
  51. Xie, F., Li, L., Song, K., Li, G., Wu, F. et al. (2019). Characterization of phosphorus forms in a Eutrophic Lake, China. Sci. Total Environ. 659: 1437–1447. DOI: 10.1016/j.scitotenv.2018.12.466.
  52. Yang, D. & Yang, C. (2009). Detection of seagrass distribution changes from 1991 to 2006 in Xincun Bay, Hainan, with satellite remote sensing. Sensors 9(2): 830–844. DOI: 10.3390/s90200830.
  53. Yuan, H.Z., Pan, W., Ren, L.J., Liu, E.F., Shen, J. et al. (2015). Species and biogeochemical cycles of organic phosphorus in sediments from a river with different aquatic plants located in Huaihe river watershed, China. Int. J. Phytoremediation. 17(1–6): 215–221. DOI: 10.1080/15226514.2013.876969.
  54. Zhao, G., Sheng, Y., Jiang, M., Zhou, H. & Zhang, H. (2019). The biogeochemical characteristics of phosphorus in coastal sediments under high salinity and dredging conditions. Chemosphere. 215: 681–692. DOI: 10.1016/j.chemosphere.2018.10.015.
  55. Zhu, F., Qu, L., Hong, X. & Sun, X. (2011). Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid. Based Compl. Altern Med. 2011: 615032. DOI: 10.1155/2011/615032.
DOI: https://doi.org/10.1515/ohs-2020-0036 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 408 - 420
Submitted on: Apr 10, 2020
Accepted on: May 25, 2020
Published on: Nov 26, 2020
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Muqiu Zhao, Hui Wang, Shuai Wang, Qiuying Han, Yunfeng Shi, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.