Figure 1

Figure 2

Figure 3

Indices calculated on the basis of density and species structure of Rotifera in the studied dam reservoirs: A – value after conversion, B – value of the indices
| Indices | Reservoirs (according to order in Fig.1) | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||||||||||
| A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | |
| Number of rotifers (N, ind. l−1) | 152 | 46 | 39 | 39 | 180 | 47 | 3313 | 63 | 1455 | 58 | 13436 | 70 | 2453 | 61 | 2641 | 62 | 1069 | 57 | 818 | 55 |
| Total biomass (B, mg w.w. l−1) | 0.14 | 53 | 0.02 | 42 | 0.06 | 49 | 0.63 | 62 | 1.21 | 65 | 3 | 64 | 1 | 64 | 1.2 | 65 | 0.2 | 55 | 0.1 | 53 |
| Percentage of bacterivores in total number (BAC, %) | 13 | 47 | 26 | 50 | 54 | 57 | 78 | 62 | 0.5 | 44 | 7 | 46 | 41 | 54 | 34 | 52 | 56 | 57 | 90 | 65 |
| Percentage of tecta in the population of Keratella cochlearis (TECTA, %) | 45 | 59 | 12 | 53 | 5 | 51 | 97 | 68 | 4 | 50 | 77 | 65 | 38 | 57 | 86 | 66 | 90 | 67 | 65 | 62 |
| Ratio of biomass to the number (B:N, mg w.w. ind.−1) | 0.0009 | 36 | 0.0005 | 43 | 0.0003 | 49 | 0.0002 | 59 | 0.0008 | 37 | 0.0002 | 53 | 0.0004 | 46 | 0.0004 | 44 | 0.0002 | 58 | 0.0002 | 62 |
| Percentage of species indicative of high trophy in the indicative group (IHT, %) | 100 | 60 | 100 | 60 | 57 | 51 | 100 | 60 | 93 | 59 | 100 | 60 | 65 | 53 | 57 | 52 | 96 | 59 | 96 | 59 |
Numerical trophic state indices for dam reservoirs, irrespective of their trophic type (TSIRot) and (TSICR); the indices use species composition and density of Rotifera and Crustacea (according to Ejsmont-Karabin 2013)
| No. | Indices | Regression coefficient | Formulas |
|---|---|---|---|
| 1 | Number of rotifers (N, ind. l−1) | R2 = 0.60 | WSTRot1 = 5.38ln(N) + 19.28 |
| 2 | Total biomass (B, mg w.w. l−1) | R2 =0.47 | WSTRot2 = 5.63ln(B) + 64.47 |
| 3 | Percentage of bacterivores in the total number (BAC, %) | R2 = 0.34 | WSTRot3= 0.23BAC + 44.30 |
| 4 | Percentage of tecta in the population of Keratella cochlearis (TECTA, %) | R2 = 0.54 | WSTRot4 =0.187TECT + 50.38 |
| 5 | Ratio of biomass to the number (B:N, mg w.w. l−1: ind. l−1) | R2= 0.50 | WSTROt5 = 3.85 (B:N)-0.318 |
| 6 | Percentage of species indicative of high trophy in the indicative group (IHT, %) | R2= 0.67 | WSTRot6 = 0.203 IHT + 40.0 |
| 7 | Number of Crustacea (N, ind. l−1) | R2= 0.32 | WSTCR1 = 25.5N 0.142 |
| 8 | Biomass of Cyclopoida (B, mg w.w. l−1) | R2= 0.35 | WSTCR2 = 57.6B 0.081 |
| 9 | Percentage of cyclopoid biomass in total biomass of Crustacea (CB,%) | R2= 0.30 | WSTCR3 = 40.9CB 0.097 |
| 10 | Ratio of cyclopoid biomass to Cladocera biomass (CY/CL) | R2= 0.37 | WSTCR4= 58.3(CY/CL) 0.071 |
| 11 | Percentage of species indicative of high trophy in the indicative group (IHT,%) | R2= 0.30 | WSTCR5 = 43.8e0.004(IHT) |
Indices calculated on the basis of density and species structure of Crustacea in the studied dam reservoirs: A – value after conversion, B – value of the indices
| Indices | Reservoirs (according to order in Fig.1) | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||||||||||
| A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | A | B | |
| Number of Crustacea (N, ind. l−1) | 12 | 36 | 26 | 40 | 154 | 52 | 1402 | 71 | 197 | 54 | 626 | 64 | 557 | 62 | 207 | 54 | 1082 | 69 | 135 | 51 |
| Biomass of Cyclopoida (B, mg w.w. l−1) | 0.03 | 44 | 0.04 | 45 | 1.7 | 60 | 7.5 | 68 | 1.5 | 60 | 4.3 | 65 | 2.7 | 62 | 3.5 | 64 | 7.2 | 67 | 1 | 57 |
| Percentage of cyclopoid biomass in total biomass of Crustacea (CB,%) | 35 | 58 | 15 | 53 | 36 | 58 | 65 | 61 | 19 | 54 | 66 | 61 | 33 | 57 | 25 | 56 | 76 | 62 | 12 | 52 |
| Ratio of cyclopoid biomass to Cladocera biomass (CY/CL) | 0.54 | 56 | 0.33 | 54 | 0.75 | 57 | 1.9 | 61 | 0.24 | 51 | 2 | 61 | 1.2 | 59 | 0,37 | 54 | 0.8 | 57 | 0.6 | 56 |
| Percentage of species indicative of high trophy in the indicative group (IHT,%) | 50 | 53 | 80 | 60 | 58 | 55 | 97 | 64 | 55 | 54 | 90 | 63 | 41 | 52 | 14 | 46 | 18 | 47 | 79 | 60 |
Trophic state of the studied dam reservoirs corresponding to the value of indices calculated on the basis of density and species structure of Rotifera and Crustacea_
| Reservoirs | Rotifera indices of trophic state | Crustacea indices of trophic state |
|---|---|---|
| Łapińskie Nowe Lake | low eutrophic | low meso-eutrophic |
| Mylof Dam Reservoir | high meso-eutrophic | low meso-eutrophic |
| Koronowskie Lake | high meso-eutrophic | high meso-eutrophic to low eutrophic |
| Zygmunt August Lake | high eutrophic to polytrophic | high eutrophic to polytrophic |
| Siemiatyckie Zalewy Reservoir | mesotrophic to high eutrophic | high meso-eutrophic to low eutrophic |
| Próba Dam Reservoir | high eutrophic to polytrophic | high eutrophic |
| Wióry Dam Reservoir | high eutrophic | low to high eutrophic |
| Chańcza Dam Reservoir | high eutrophic to polytrophic | high meso-eutrophic to high eutrophic |
| Leśniańskie Lake | low to high eutrophic | low eutrophic to polytrophic |
| Lubachowski Dam Reservoir | low to high eutrophic | low eutrophic |
Selected physicochemical parameters of water in the studied dam reservoirs (after Pociecha & Bielańska-Grajner 2015)
| Parameters | Reservoirs (according to order in Fig. 1) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
| SD | m | 1.4 | 3.4 | 2.7 | 0.3 | 1.2 | 0.8 | 1.3 | 1.0 | 1.6 | 2.3 |
| WT | °C | 12.6 | 14.8 | 14.6 | 19.2 | 19.2 | 21.3 | 21.7 | 22.4 | 16.7 | 16.1 |
| EC | μS cm−1 | 372 | 274 | 326 | 335 | 359 | 376 | 402 | 254 | 135 | 246 |
| pH | 7.7 | 7.6 | 7.5 | 7.6 | 8.1 | 8.5 | 8.0 | 7.7 | 5.6 | 7.8 | |
| DO | mg l−1 | 11.2 | 8.5 | 5.9 | 3.1 | 14.8 | 13.1 | 8.8 | 14.1 | 8.2 | 6.6 |
| No3 − | 3.1 | 0.5 | 0.5 | 0.08 | 0.04 | 0.03 | 0.21 | 0.1 | 2.05 | 2.4 | |
| po4 3− | 0.4 | 0.3 | 0.5 | 0.01 | 0.03 | 0.01 | 0.02 | 0.02 | 0.07 | 0.25 | |
| NH4 + | 0.04 | 0.1 | 0.2 | 0.03 | 0.1 | 0.02 | 0.28 | 0.1 | 0.1 | 0.06 | |
| Cl- | 17.3 | 10.2 | 12.7 | 11.9 | 12.8 | 31.2 | 26.7 | 12.4 | 8.1 | 17.6 | |
| Mg2+ | 8.0 | 4.9 | 6.8 | 11.75 | 10.2 | 10.2 | 16.8 | 6.9 | 2.65 | 11.1 | |
| Ca2+ | 62.05 | 48.9 | 56.75 | 55.7 | 58.1 | 53.0 | 45.7 | 43.6 | 12.9 | 28.3 | |
Characteristics of the studied dam reservoirs in Poland (nd – no data)
| Name of dam reservoir | Łapinskie Nowe Lake | Mylof Dam Reservoir | Koronowskie Lake | Zygmunt August Lake | Siemiatyckie Zalewy Reservoir | Próba Dam Reservoir | Wióry Dam Reservoir | Chańcza Dam Reservoir | Leśniańskie Lake | Lubachowski Dam Reservoir |
|---|---|---|---|---|---|---|---|---|---|---|
| Location | Kolbudy | Zapora | Koronowo | Czechowizna | Siemiatycze | Próba | Pawłów, Knurów | Chańcza | Leśna | Lubachów |
| Coordinates | 54°17′25″N 18°26′47″E | 53°47′38″N 17°40′32″E | 53°32′34″N 17°58′01″E | 53°27′36″N 22°53′39″E | 52°26′12″N 22°52′10″E | 51°30′41″N 18°39′24″E | 50°56′48″N 21°10′12″E | 50°38′40″N 21°03′18″E | 51°01′52″N 15°18′10″E | 50°45′02″N 16°25′34″E |
| Year of creation | 1925 | 1848 | 1960 | 1559 | 70’s XX age | 2001 | 1980 | 1984 | 1905 | 1917 |
| River | Radunia | Brda | Brda | Nereśl | Kamionka | Żeglina | Świślina | Czarna Staszowska | Kwisa | Bystrzyca |
| Area | 0.35 km 2 | 10.5 km 2 | 13.5 km 2 | 4.85 km 2 | 0.33 km 2 | 0.21 km 2 | 4. 15 km 2 | 4.7 km 2 | 1.4 km 2 | 0.51 km 2 |
| Capacity | 2.5 M m3 | 16.2 M m3 | 80. 6 M m3 | no data | 0. 59 M m3 | no data | 35 M m3 | 20.59 M m3 | 15 M m3 | 8 M m3 |
| Max depth | 15.4 m | 12 m | 21.2 m | 3.5 m | 5.1 m | 4 m | 10 m | 11 m | 12 m | 36 m |
| Catchment | forest | forest | agroforestry | agriculture | agroforestry | forest | agriculture | forest | forest | forest |
| Function | retention, energy, fishing | retention, energy, fishing | retention, energy, fishing, recreation | fish farming | retention, fishing, recreation | retention, fishing, recreation | retention, energy, fishing, recreation | retention, energy, fishing, recreation | retention, energy, fishing, recreation | retention, energy, fishing, recreation |
| Retention time (in days) | nd | 12.5 | 38 | nd | nd | nd | nd | 218 | 37.8 | 54.8 |
Dominant species of zooplankton (%) in the studied dam reservoirs in 2012
| Dominant species | Reservoirs (according to the order in Fig. 1) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| Rotfera | ||||||||||
| Conochilus unicornis | 17 | |||||||||
| Keratella cochlearis | 30 | 12 | 43 | 27 | 41 | 38 | 57 | |||
| Keratella tecta | 14 | 45 | 33 | 24 | 28 | |||||
| Keratella quadrata | 10 | |||||||||
| Lecane closterocerca | 15 | |||||||||
| Polyartdra dolichoptera | 17 | |||||||||
| Polyartdra longiremis | 16 | |||||||||
| Polyartdra major | 22 | |||||||||
| Polyartdra vulgaris | 16 | |||||||||
| Pompholyx sulcata | 40 | |||||||||
| Synchaeta oblonga | 13 | |||||||||
| Trichocerca pusilla | 50 | |||||||||
| Trichocerca similis | 10 | 16 | ||||||||
| Cladocera | ||||||||||
| Bosmina longirostris | 15 | 61 | 76 | 18 | 53 | 73 | ||||
| Ceriodaphnia quadralunga | 16 | 13 | 10 | |||||||
| Chydorus sphaericus | 15 | 30 | 25 | 12 | ||||||
| Daphnia ambigua | 13 | |||||||||
| Daphnia cucullata | 26 | 15 | 19 | 10 | 36 | |||||
| Daphnia galeata | 25 | 18 | ||||||||
| Diaphanosoma brachyurum | 46 | 19 | ||||||||
| Eubosmina coregoni | 50 | 11 | ||||||||
| Eubosmina crassicornis | 38 | |||||||||
| Eubosmina gibbera | 15 | |||||||||
| Eubosmina tdersities | ||||||||||
| Copepoda | ||||||||||
| Eudiaptomus gracilis | 13 | |||||||||
| Tdermocyclops crassus | 10 | |||||||||
| Tdermocyclops oitdnoides | 17 | |||||||||
The trophic state of dam reservoirs corresponding to the value of indices calculated on the basis of density and species structure of Rotifera and Crustacea (after Ejsmont-Karabin 2013)
| Zooplankton value of trophic state indices | Trophic state |
|---|---|
| Below 35 | Oligotrophic |
| From 35 to 45 | Mesotrophic |
| From 45 to 50 | Low meso-eutrophic |
| From 50 to 55 | High meso-eutrophic |
| From 55 to 60 | Low eutrophic |
| From 60 to 65 | High eutrophic |
| Above 65 | Polytrophic |