References
- Agusti, S., Duarte, C.M. & Kalff, J. (1987). Algal cell size and the maximum density and biomass of phytoplankton. Limnology and Oceanography 32(4): 983–986.
- Banse, K. (1976). Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size – a review. Journal of Phycology 12(2): 135–140. 10.1111/j.1529-8817.1976.tb00490.x
- Bogen, C., Klassen, V., Wichmann, J., La Russa, M., Doebbe, A. et al. (2013). Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresource Technology 133: 622–626.
- Borowitzka, M.A. (1992). Algal biotechnology products and processes – matching science and economics. Journal of Applied Phycology 4(3): 267–279. 10.1007/BF02161212.
- Borowitzka, M.A. (2013). Species and Strain Selection. In M.A. Borowitzka & N.R. Mohaeimani (Eds.), Algae for Biofuels and Energy. (pp. 78–90). Dordrecht: Springer Science+Business Media.
- Chabrol, E., & Charonnat, R. (1937). Une nouvelle reaction pour l’etude des lipides l’oleidemie. Presse Méd.
- Courchesne, N.M.D., Parisien, A., Wang, B. & Lan, C.Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology 141(1–2): 31–41. 10.1016/j.jbiotec.2009.02.018.
- Fogg, G.E (1975). Algal Cultures and Phytoplankton Ecology. 2nd edition, The University of Wisconsin Press, Wisconsin.
- Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1): 497–509.
- Grama, B.S., Chader, S., Khelifi, D., Stenuit, B., Jeffryes, C. et al (2014). Characterization of fatty acid and carotenoid production in an Acutodesmus microalga isolated from the Algerian Sahara. Biomass and Bioenergy 69: 265–275. 10.1016/j.biombioe.2014.07.023.
- Griffiths, M.J., & Harrison, S.T.L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 21(5): 493–507. 10.1007/s10811-008-9392-7.
- Griffiths, M.J., van Hille, R.P. & Harrison, S.T.L. (2012). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. Journal of Applied Phycology 24(5): 989–1001. 10.1007/s10811-011-9723-y.
- Guillard, R.R.L. (1973). Division rates. In E. Stein, J.R. (Ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements (pp. 289–312). Cambridge: Cambridge University Press.
- Guillard, R.R.L. (1975). Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals (pp. 29–60). Boston, MA: Springer US. 10.1007/978-1-4615-8714-9_3.
- Harwati, T.U., Willke, T. & Vorlop, K.D. (2012). Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Bioresource Technology 121: 54–60. 10.1016/j.biortech.2012.06.098.
- Hein, M., Pedersen, M.F. & Sand-Jensen, K. (1995). Size-dependent nitrogen uptake in micro- and macroalgae. Marine Ecology Progress Series 118: 247–253.
- Illman, A.M., Scragg, A.H., & Shales, S.W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology 27(8): 631–635. 10.1016/S0141-0229(00)00266-0.
- Khozin-Goldberg, I. (2016). Lipid Metabolism in Microalgae. In M.A. Borowitzka, J. Beardall & J.A. Raven (Eds.), The Physiology of Microalgae (pp. 413–481). Cham: Springer International Publishing. 10.1007/s00299-013-1493-3.
- Knight, J.A., Anderson, S. & Rawle, J.M. (1972). Chemical Basis of the Sulfo-phospho-vanillin Reaction for Estimating Total Serum Lipids. Clinical Chemistry 18(3): 199–202.
- Kong, W., Song, H., Cao, Y., Yang, H., Hua, S. et al. (2011). The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African Journal of Biotechnology 10(55): 11620–11630. 10.5897/AJB11.617.
- Lam, M.K. & Lee, K.T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances 30(3): 673–690. 10.1016/j.biotechadv.2011.11.008.
- Latała, A., Jodłowska, S. & Pniewski, F. (2006). Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Algological Studies 122(December): 137–154. 10.1127/1864-1318/2006/0122-0137.
- Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y., & Oh, H.M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology 101(1 SUPPL.): S75–S77. 10.1016/j.biortech.2009.03.058.
- Mata, T.M., Martins, A.A., Caetano, N.S., Nio, A., Martins, A.A. et al. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14(1): 217–232. 10.1016/j.rser.2009.07.020.
- Metzger, P. & Largeau, C. (2005). Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology 66(5): 486–496. 10.1007/s00253-004-1779-z.
- Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K., & Relyea, R. A. (2005). Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution 20(12): 685–692. 10.1016/j.tree.2005.08.002.
- Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I. et al. (2013). Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria. Bioenergy Research 6(1): 1–13. 10.1007/s12155-012-9222-2.
- Nielsen, S.L. (2006). Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: Comparisons between unicells and colonial growth forms. Journal of Plankton Research 28(5): 489–498. 10.1093/plankt/fbi134.
- Olenina, I., Hajdu, S., Edler, L., Wasmund, N., Busch, S. et al. (2006). Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt. Sea Environ. Proc. 106(106), 144 pp.
- Olofsson, M., Lindehoff, E., Frick, B., Svensson, F. & Legrand, C. (2015). Baltic Sea microalgae transform cement flue gas into valuable biomass. Algal Research 11: 227–233. 10.1016/j.algal.2015.07.001.
- Patterson, G.M.L., Larsen, L.K. & Moore, R.E. (1994). Bioactive natural products from blue-green algae. Journal of Applied Phycology 6: 151–157.
- Schwenk, D., Seppälä, J., Spilling, K., Virkki, A., Tamminen, T. et al. (2013). Lipid content in 19 brackish and marine microalgae: influence of growth phase, salinity and temperature. Aquatic Ecology 47(4): 415–424. 10.1007/s10452-013-9454-z.
- StatSoft, Inc. (2007). STATISTICA (data analysis software system), version 8.0. www.statsoft.com.
- Stanisz, A. (2007a). Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 2. Modele liniowe i nieliniowe (pp. 271–314). Kraków: StatSoft Polska Sp.z.o.o. (In Polish).
- Stanisz, A. (2007b). Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 3. Analizy wymiarowe (pp. 113–161). Kraków: StatSoft Polska Sp.z.o.o. (In Polish).
- Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101(2): 87–96. 10.1263/jbb.101.87.
- Sydney, E.B., da Silva, T.E., Tokarski, A., Novak, A.C., de Carvalho, J.C. et al. (2011). Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy 88(10): 3291–3294. 10.1016/j.apenergy.2010.11.024.
- Tan, K.W.M. & Lee, Y.K. (2016). The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnology for Biofuels 9(1): 255. 10.1186/s13068-016-0671-2.
- Tasi, M.B., Pinto, L.F.R., Klein, B.C., Veljkovi, V.B. & Filho, R.M. (2016). Botryococcus braunii for biodiesel production. Renewable and Sustainable Energy Reviews 64: 260–270. 10.1016/j.rser.2016.06.009.
- Tsarenko, P., Borysova, O. & Blume, Y. (2016). High biomass producers and promising candidates for biodiesel production from microalgae collection IBASU-A(Ukraine). Oceanol. Hydrobiol. St. 45(1): 79–85. 10.1515/ohs-2016-0008.
- Wood, M. A., Everroad, R. C., & Wingard, L. (2005). Measuring Growth Rates in Microalgal Cultures. In R.A. Andersen (Ed.), Algal Culturing Techniques (pp. 269–285). Burlington, USA. 10.1007/s13398-014-0173-7.2.
- Wuang, S.C., Luo, Y.D., Wang, S., Chua, P.Q.D., & Tee, P.S. (2016). Performance assessment of biofuel production in an algae-based remediation system. Journal of Biotechnology 221: 43–48. 10.1016/j.jbiotec.2016.01.024.
- Xu, Y. & Boeing, W.J. (2014). Modeling maximum lipid productivity of microalgae: Review and next step. Renewable and Sustainable Energy Reviews 32: 29–39. 10.1016/j.rser.2014.01.002.
- Yoo, C., Jun, S.-Y., Lee, J.-Y., Ahn, C.-Y. & Oh, H.-M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101(1): S71-S74 10.1016/j.biortech.2009.03.030.
- Yu, X., Zhao, P., He, C., Li, J., Tang, X. et al. (2012). Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresource Technology 121: 256–262. 10.1016/j.biortech.2012.07.002.