Have a personal or library account? Click to login
Baltic Sea Holocene evolution based on OSL and radiocarbon dating: evidence from a sediment core from the Arkona Basin (the southwestern Baltic Sea) Cover

Baltic Sea Holocene evolution based on OSL and radiocarbon dating: evidence from a sediment core from the Arkona Basin (the southwestern Baltic Sea)

By: Robert Kostecki and  Piotr Moska  
Open Access
|Sep 2017

References

  1. Adamiec, G. & Aitken, M.J. (1998). Dose-rate conversion factors: update. Ancient TL 16: 37- 50.
  2. Andrén, E., Andrén, T. & Sohlenius, G. (2000). The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29: 233-250. 10.1080/030094800424259.
  3. Andren, T., Björck, S., Andren, E., Conley, D., Zillén, L. et al. (2011). The Development of the Baltic Sea Basin During the Last 130 ka. In The Baltic Sea Basin (pp. 75-97). Springer, Berlin Heidelberg.
  4. Bendixen, C., Jensen, J.B., Boldreel, L.O., Clausen, O.R., Bennike, O. et al. (2017). The Holocene Great Belt connection to the southern Kattegat, Scandinavia: Ancylus Lake drainage and Early Littorina Sea transgression. Boreas 46(1): 53-68. 10.1111/bor.12154.
  5. Bennett, K.D. (1996). Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155-170.
  6. Berger, G.W. (2010). An alternate form of probability-distribution plot for De values. Antient TL 28, 11-22
  7. Blaauw, M. & Christen, J.A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6: 457-474.
  8. Blott, S.J. & Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms 26: 1237-1248.
  9. Borówka, R.K., Osadczuk, A., Witkowski, A., Wawrzyniak- Wydrowska, B. & Duda, T. (2005). Late Glacial and Holocene depositional history in the eastern part of the Szczecin Lagoon (Great Lagoon) basin--NW Poland. Quat. Int. 130: 87-96. 10.1016/j.quaint.2004.04.034.
  10. Bortolot, V.J., (2000). A new modular high capacity OSL reader system. Radiation Measurements 32: 751-757.
  11. Borzenkova, I., Zorita, E., Borisova, O., Kalniņa, L., Kisielienė, D. et al. (2015). Second assessment of climate change for the Baltic Sea Basin. In The BACC II Author Team (Eds.), Second Assessment of Climate Change for the Baltic Sea Basin. (pp. 25-49). Springer. 10.1007/978-3-319-16006-1.
  12. Emelyanov, E.M. & Vaikutienė, G. (2013). Holocene environmental changes during tran sition Ancylus- Litorina stages in the Gdansk Basin, south-eastern Baltic Sea. Baltica 26: 71-82. 10.5200/baltica.2013.26.08.
  13. Feldens, P. & Schwarzer, K. (2012). The Ancylus Lake stage of the Baltic Sea in Fehmarn Belt: Indications of a new threshold. Cont. Shelf Res. 35: 43-52. 10.1016/j.csr.2011.12.007.
  14. Fleming, S. (1979). Thermoluminescence techniques in archaeology. Clarendon Press, Oxford.
  15. Folk, R.L. (1966). A review of grain-size parameters. Sedimentology 6: 73-93. 10.1111/j.1365-3091.1966.tb01572.x.
  16. Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M. (1999). Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41: 1835- 1857.
  17. Grigoriev, A., Zhamoida, V., Spiridonov, M., Sharapova, A., Sivkov, V. et al. (2011). Late-glacial and Holocene palaeoenvironments in the Baltic Sea based on a sedimentary record from the Gdansk Basin. Clim. Res. 48: 13-21. 10.3354/cr00944.
  18. Grimm, E.C. (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13: 13-35. 10.1016/0098-3004(87)90022-7.
  19. Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I. (2015). The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas 45: 1-45. 10.1111/bor.12142.
  20. Jacobs, Z. (2008). Luminescence chronologies for coastal and marine sediments. Boreas 37: 508-535. 10.1111/j.1502-3885.2008.00054.x.
  21. Jensen, J.B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. (1999). Early Holocene history of the southwestern Baltic Sea: the Ancylus Lake stage. Boreas 28: 437-453. 10.1111/j.1502-3885.1999.tb00233.x.
  22. Juggins, S. (2017). rioja: Analysis of Quaternary Science Data, R package version (0.9-15). (http://cran.r-project.org/ package=rioja).
  23. Kortekaas, M. (2007). Post-glacial history of sea-level and environmental change in the southern Baltic Sea. Lund University. Department of Geology, Quaternary Sciences.
  24. Kortekaas, M., Murray, A., Sandgren, P. & Björck, S. (2007). OSL chronology for a sediment core from the southern Baltic Sea: A continuous sedimentation record since deglaciation. Quat. Geochronol. 2: 95-101. 10.1016/j.quageo.2006.05.036
  25. Kostecki, R. (2014). Stages of the Baltic Sea evolution in the geochemical record and radiocarbon dating of sediment cores from the Arkona Basin. Oceanol. Hydrobiol. St. 43: 237-246. 10.2478/s13545-014-0138-7.
  26. Kostecki, R. & Janczak-Kostecka, B. (2011). Holocene evolution of the Pomeranian Bay environment, southern Baltic Sea. Oceanologia 53: 471-487.
  27. Kostecki, R. & Janczak-Kostecka, B. (2012). Holocene environmental changes in the south-western Baltic Sea reflected by the geochemical data and diatoms of the sediment cores. J. Mar. Syst. 105-108: 106-114. 10.1016/j.jmarsys.2012.06.005.
  28. Kostecki, R., Janczak-Kostecka, B., Endler, M. & Moros, M. (2015). The evolution of the Mecklenburg Bay environment in the Holocene in the light of multidisciplinary investigations of the sediment cores. Quat. Int. 386: 226-238. 10.1016/j.quaint.2015.07.007.
  29. Lemke, W., Jensen, J.B., Bennike, O., Endler, R., Witkowski, A. et al. (2001). Hydrographic thresholds in the western Baltic Sea: Late Quaternary geology and the Dana River concept. Mar. Geol. 176: 191-201.
  30. Lougheed, B.C., Filipsson, H.L. & Snowball, I. (2013). Large spatial variations in coastal 14C reservoir age – a case study from the Baltic Sea. Clim. Past 9: 1015-1028. 10.5194/cp-9-1015-2013.
  31. Mejdahl, V. (1979). Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21, 1, pp. 61-72.
  32. Moros, M., Lemke, W., Kuijpers, A., Endler, R., Jensen, J.B. et al. (2002). Regressions and transgressions of the Baltic basin reflected by a new high-resolution deglacial and postglacial lithostratigraphy for Arkona Basin sediments (western Baltic Sea). Boreas 31: 151-162. 10.1080/030094802320129953.
  33. Murray, A.S. & Wintle, A.G. (2000). Luminescence dating of quartz using an improved singlealiquot regenerative-dose protocol. Radiation Measurements 32: 57-73.
  34. Murray, A.S. & Olley, J.M. (2002). Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 1-16.
  35. Prescott, J.R. & Stephan, L.G. (1982). The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependencies. TLS II-1, pp. 16-25.
  36. Racinowski, R., Szczypek, T. & Wach, J. (2001). Prezentacja i interpretacja wyników badan uziarnienia osadów czwartorzędowych [Presentation and interpretation of the results of grain-size analysis]. Silesian University, Katowice. Rees-Jones, J. (1995). Optical dating of young sediments using fine-grain quartz. Ancient TL. 13: 9-14.
  37. Rees-Jones, J. (1995). Optical dating of young sediments using fine-grain quartz. Ancient TL. 13: 9-14.
  38. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G. et al. (2013). Intcal13 and marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55: 1869-1887.
  39. Rößler, D., Moros, M. & Lemke, W. (2011). The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40: 231-241. 10.1111/j.1502-3885.2010.00180.x.
  40. Stuiver, M. & Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35: 215-230.
  41. Szmytkiewicz, A. & Zalewska, T. (2014). Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the outer puck bay (Baltic Sea). Oceanologia 56: 85-106. 10.5697/oc.56-1.085.
  42. Winn, K. & Averdieck, F.-R. (1984). Post-Boreal development of the Western Baltic: comparison of two local sediment basins. Meyniana 36: 35-50.
  43. Witkowski, A., Broszinski, A., Bennike, O., Janczak-Kostecka, B., Bo Jensen, J. et al. (2005). Darss Sill as a biological border in the fossil record of the Baltic Sea: evidence from diatoms. Quat. Int. 130: 97-109. 10.1016/j.quaint.2004.04.035.
  44. Zhang, J., Tsukamoto, S., Grube, A. & Frechen, M. (2014). OSL and 14 C chronologies of a Holocene sedimentary record (Garding-2 core) from the German North Sea coast. Boreas 43: 856-868. 10.1111/bor.12071.
DOI: https://doi.org/10.1515/ohs-2017-0031 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 294 - 306
Submitted on: Jul 11, 2016
Accepted on: Dec 6, 2016
Published on: Sep 27, 2017
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Robert Kostecki, Piotr Moska, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.