Have a personal or library account? Click to login
Growth rates of common pelagic ciliates in a highly eutrophic lake measured with a modified dilution method Cover

Growth rates of common pelagic ciliates in a highly eutrophic lake measured with a modified dilution method

Open Access
|Jun 2016

References

  1. Agatha, S., Laval-Peuto, M. & Simon, P. (2013). The tintinnid lorica. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 17-41). Chichester: Wiley-Blackwell.
  2. Bautista-Reyes, F. & Macek, M. (2012). Ciliate food vacuole content and bacterial community composition in the warm-monomictic crater Lake Alchichica, México. FEMS Microbiol. Ecol. 79: 85-97. 10.1111/j.1574-6941.2011.01200.x.
  3. Berglund, J., Samuelsson, K., Kull, T., Müren, U. & Andersson, A. (2005). Relative strength of resource and predation limitation of heterotrophic nanoflagellates in a low-productive sea area. J. Plankton Res. 27: 923-935. 10.1093/plankt/fbi067.
  4. Biernacka, I. (1952). Studies on the reproduction of some species of the genus Tintinnopsis Stein. Ann. Univ. Mariae Curie-Sklodowska Sect. C 6: 211-247. (In Polish with English abstract).
  5. Boenigk, J. & Novarino, G. (2004). Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol. 34: 181-192.
  6. Børsheim, K.Y. & Bratbak, G. (1987). Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171-175.
  7. Buitenhuis, E.T., Rivkin, R.B., Sailley, S. & Le Quéré, C. (2010). Biogeochemical fluxes through microzooplankton. Global Biogeochem. Cy. 24: GB4015. 10.1029/2009GB003601.
  8. Calbet, A. & Saiz, E. (2013). Effects of trophic cascades in dilution grazing experiments: from artificial saturated feeding responses to positive slopes. J. Plankton Res. 35: 1183-1191. 10.1093/plankt/fbt067.
  9. Campbell, A.S. (1926). The cytology of Tintinnopsis nucula (Fol) Laackmann with an account of its neuromotor apparatus, division, and a new intranuclear parasite. Univ. Calif. Publs. Zool. 29: 179-236.
  10. Caron, D.A. (1983). Technique for enumeration of heterotrophic and phototrophic anoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46: 491-498.
  11. Caron, D.A. & Hutchins, D.A. (2013). The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plankton Res. 35: 235-252. 10.1093/plankt/fbs091.
  12. Carrias, J.-F., Thouvenot, A., Amblard, C. & Sime-Ngando, T. (2001). Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, France. Aquat. Microb. Ecol. 24: 163-174.
  13. Carrick, H. (2005). An under-appreciated component of biodiversity in plankton communities: the role of protozoa in Lake Michigan (a case study). Hydrobiologia 551: 17-32. 10.1007/s10750-005-4447-0.
  14. Carrick, H.J., Fahnenstiel, G.L. & Taylor, W.D. (1992). Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamics. Limnol. Oceanogr. 37: 1221-1235.
  15. Choi, J.W. & Stoecker, D.K. (1989). Effects of fixation on cell volume of marine planktonic protozoa. Appl. Environ. Microbiol. 55: 1761-1765.
  16. Cleven, E.-J. (2004). Pelagic ciliates in a large mesotrophic lake: seasonal succession and taxon-specific bacterivory in Lake Constance. Internat. Rev. Hydrobiol. 89: 289-304. 10.1002/iroh.200310701.
  17. Cleven, E.-J. & Königs, S. (2007). Growth of interstitial ciliates in association with ciliate bacterivory in a sandy hyporheic zone. Aquat. Microb. Ecol. 47: 177-189.
  18. Cleven, E.-J. & Weisse, T. (2001). Seasonal succession and taxon-specific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance. Aquat. Microb. Ecol. 23: 147-161.
  19. Coats, D.W. & Bachvaroff, T.R. (2013). Parasites of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 145-170). Chichester: Wiley-Blackwell.
  20. Coats, D.W., Kim, Y.O., Choi, J.M. & Lee, E.S. (2014). Observations on dinoflagellate parasites of aloricate ciliates in Korean coastal waters. Aquat. Microb. Ecol. 72: 89-97. 10.3354/ame01687.
  21. Dolan, J.R. (2010). Morphology and ecology in tintinnid ciliates of the marine plankton: correlates of lorica dimensions. Acta Protozool. 49: 235-244.
  22. Dolan, J.R. & Coats, D.W. (1991). A study of feeding in predacious ciliates using prey ciliates labeled with fluorescent microspheres. J. Plankton Res. 13: 609-627.
  23. Dupuy, C., Ryckaert, M., Le Gall, S. & Hartmann, H.J. (2007). Seasonal variations in planktonic community structure and production in an Atlantic coastal pond: the importance of nanoflagellates. Microb. Ecol. 53: 537-548. 10.1007/s00248-006-9087-z.
  24. Fenchel, T. (1980). Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13-25.
  25. Fenchel, T. (1986). Protozoan filter feeding. Progr. Protistol. 1: 65-113.
  26. Ficek, D. & Wielgat-Rychert, M. (2009). Spatial distribution and seasonal variation in chlorophyll concentration s in the coastal Lake Gardno (Poland). Oceanol. Hydrobiol. Stud. 38: 3-15. 10.2478/v10009-009-0002-z.
  27. Finlay, B.J. (1977). The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia (Berl.) 30: 75-81.
  28. First, M.R., Miller, H.L., Lavrentyev, P.J., Pinckney, J.L. & Burd, A.B. (2009). Effects of microzooplankton growth and trophic interactions on herbivory in coastal and offshore environments. Aquat. Microb. Ecol. 54: 255-267. 10.3354/ame01271.
  29. Foissner, W. & Berger, H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicatiors in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biol. 35: 375-482.
  30. Franzé, G. & Lavrentyev, P.J. (2014). Microzooplankton growth rates examined across a temperature gradient in the Barents Sea. PLoS ONE 9: e86429. 10.1371/journal.pone.0086429.
  31. Franzé, G. & Modigh, M. (2013). Experimental evidence for internal predation in microzooplankton communities. Mar. Biol. 160: 3103-3112. 10.1007/s00227-013-2298-1.
  32. Frost, B.W. (1972). Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanuspacificus. Limnol. Oceanogr. 17: 805-815.
  33. Gallegos, C.L. (1989). Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Mar. Ecol. Prog. Ser. 57: 23-33.
  34. Gast, V. (1985). Bacteria as a food source for microzooplankton in the Schlei Fjord and Baltic Sea with special reference to ciliates. Mar. Ecol. Prog. Ser. 22: 107-120.
  35. Gismervik, I. (2005). Numerical and functional responses of choreo- and oligotrich planktonic ciliates. Aquat. Microb. Ecol. 40: 163-173.
  36. Heinbokel, J.F. (1978). Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177-189.
  37. Heinbokel, J.F. & Coats, D.W. (1986). Patterns of tintinnine abundance and reproduction near the edge of seasonal pack-ice in the Weddell Sea, November 1983. Mar. Ecol. Prog. Ser. 33: 71-80.
  38. Hobbie, J.E., Daley, R.J. & Jasper, S. (1977). Use of nucleopore filters for counting bacteria by epifluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228.
  39. Jakobsen, H.H. & Strom, S.L. (2004). Circadian cycles in growth and feeding rates of heterotrophic protist plankton. Limnol. Oceanogr. 49: 1915-1922.
  40. Jeffrey, S.W. & Humphrey, G.F. (1975). New spectrophotometric equation for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191-194.
  41. Jezbera, J., Horňák, K. & Šimek, K. (2005). Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridisation. FEMS Microbiol. Ecol. 52: 351-363. 10.1016/j.femsec.2004.12.001.
  42. Klaas, C., Verity, P.G. & Schultes, S. (2008). Determination of copepod grazing on natural plankton communities: correcting for trophic cascade effects. Mar. Ecol. Prog. Ser. 357: 195-206. 10.3354/meps07262.
  43. Lai, C.-C., Fu, Y.-W., Liu, H.-B., Kuo, H.-Y., Wang, K.-W. et al. (2014). Distinct bacterial-production-DOC-primary-production relationships and implications for biogenic C cycling in the South China Sea shelf. Biogeosciences 11: 147-156. 10.5194/bg-11-147-2014.
  44. Landry, M.R. & Hassett, R.P. (1982). Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283-288.
  45. Landry, M.R., Haas, L.W. & Fagerness, V.L. (1984). Dynamics of microbial plankton communities: Experiments in Kanoehe, Hawaii. Mar. Ecol. Prog. Ser. 16: 127-133.
  46. Lavrentyev, P.J., McCarthy, M.J., Klarer, D.M., Jochem, F. & Gardner, W.S. (2004). Estuarine microbial food web patterns in a Lake Erie coastal wetland. Aquat. Ecol. 48: 567-577. 10.1007/s00248-004-0250-0.
  47. Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114: 67-83.
  48. Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1994). Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. Mar. Biol. Assoc. UK 74: 849-861.
  49. Macek, M., Šimek, K., Pernthaler, J., Vyhnálek, V. & Psenner, R. (1996). Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degree. J. Plankton Res. 18: 463-481.
  50. McManus, G.B. (1993). Growth rates of natural populations of heterotrophic nanoplankton. In P.F. Kemp, B.F. Sherr, E. B. Sherr, J.J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 557-562). Boca Raton: Levis Publishing.
  51. McManus, G.B. & Santoferrara, L.F. (2013). Tintinnids in microzooplankton communities. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 198-213). Chichester: Wiley-Blackwell.
  52. Mironova, E., Telesh, I. & Skarlato, S. (2012). Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res. 34: 208-220. 10.1093/plankt/fbr095.
  53. Mitra, A., Flynn, K.J., Burkholder, J.M., Berge, T., Calbet, A. et al. (2014). The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11: 995-1005. 10.5194/bg-11-995-2014.
  54. Montagnes, D.J.S. (1996). Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241-254.
  55. Montagnes, D.J.S. (2013). Ecophysiology and behavior of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 85–121). Chichester: Wiley-Blackwell.
  56. Montagnes, D.J.S., Barbosa, A.B., Boenigk, J., Davidson, K., Jürgens, K. et al. (2008). Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat. Microb. Ecol. 53: 83-98. 10.3354/ame01229.
  57. Montagnes, D.J.S., Lynn, D.H., Roff, J.C. & Taylor, W.D. (1988). The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99: 21-30.
  58. Montagnes, D.J.S., Berges, J.A., Harrison, P.J. & Taylor, F. J.R. (1994). Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39: 1044-1060.
  59. Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18: 261-273.
  60. Müller, H. & Geller, W. (1993). Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol. 126: 315-327.
  61. Nielsen, T.G. & Kiørboe, T. (1994). Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508-519.
  62. Ohman, M.D. & Snyder, R.A. (1991). Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr. 36: 922-935.
  63. Paffenhöfer, G.A., Sherr, B.F. & Sherr, E.B. (2007). From small scales to the big picture: persistence mechanisms of planktonic grazers in the oligotrophic ocean. Mar. Ecol. 28: 243-253. 10.1111/j.1439-0485.2007.00162.x.
  64. Peštová, D., Macek, M. & Martínez-Pérez, M.E. (2008) Ciliates and their picophytoplankton-feeding activity in a highaltitude warm-monomictic saline lake. Eur. J. Protistol. 44: 13-25. 10.1016/j.ejop.2007.04.004.
  65. Posch, T., Jezbera, J., Vrba, J., Šimek, K., Pernthaler, J. et al. (2001). Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: a study from a continuous cultivation system. Microb. Ecol. 42: 217-227. 10.1007/s002480000114.
  66. Pratt, J.R. & Cairns, J.Jr. (1985). Functional groups in the protozoa: roles in dif ering ecosystems. J. Protozool. 32: 415-423.
  67. Rivier, A., Brownlee, D.C., Sheldon, R.W. & Rassoulzadegan, F. (1985). Growth of microzooplankton: a comparative study of bactivorous zooflagellates and ciliates. Mar. Microb. Food Webs 1: 51-60.
  68. Rychert, K. (2011). Dependence between volumes of protoplast and lorica in Lugol-fixed tintinnid ciliates. Protist 162: 249-252. 10.1016/j.protis.2010.05.004.
  69. Rychert, K. (2013). A modified dilution method reveals higher protozoan growth rates than the size fractionation method. Eur. J. Protistol. 49: 249-254. 10.1016/j.ejop.2012.08.003.
  70. Rychert, K., Wielgat-Rychert, M., Szczurowska, D., Myszka, M., Bochynska, M. et al. (2012). The importance of ciliates as a trophic link in shallow, brackish and eutrophic lakes. Pol. J. Ecol. 60: 767-776.
  71. Seuthe, L., Iversen, K.R. & Narcy, F. (2011). Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol. 34: 751-766. 10.1007/s00300-010-0930-9.
  72. Šimek, K., Bobková, J., Macek, M., Nedoma, J. & Psenner, R. (1995). Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40: 1077-1090.
  73. Sonntag, B., Posch, T., Klammer, S., Teubner, K. & Psenner, R. (2006). Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat. Microb. Ecol. 43: 193-207.
  74. Stocker, R. (2012). Marine microbes see a sea of gradients. Science 338: 628-633. 10.1126/science.1208929.
  75. Taylor, W.D. (1978). Maximum growth rate, size and commonness in a community of bactivorous ciliates. Oecologia (Berl.) 36: 263-272.
  76. Trojanowski, J. & Antonowicz, J. (2011). Heavy metals in surface microlayer in water of Lake Gardno. Arch. Environ. Prot. 37: 75-88.
  77. Turley, C.M., Newell, R.C. & Robins, D.B. (1986). Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser. 33: 59-70.
  78. Utermöhl, H. (1958). Improving quantitative methods for phytoplankton analyses. Mitt. Int. Ver. Limnol. 9: 1-38. (In German).
  79. Verity, P.G. (1986). Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 117-126.
  80. Verity, P.G. & Langdon, C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859-867.
  81. Wallberg, P., Jonsson P.R. & Johnstone, R. (1999). Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystem. Aquat. Microb. Ecol. 18: 175-185.
  82. Weisse, T., Karstens, N., Meyer, V.C.L., Janke, L., Lettner, S. et al. (2001). Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat. Microb. Ecol. 26: 167-179.
  83. Weisse, T., Stadler, P., Lindström, E.S., Kimmance, S.A. & Montagnes, D.J.S. (2002). Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta. Limnol. Oceanogr. 47: 1447-1455.
  84. Wiackowski, K., Doniec, A. & Fyda, J. (1994). An empirical study of the effect of fixation on ciliate cell volume. Mar. Microb. Food Webs 8: 59-69.
  85. Wiackowski, K., Ventelä, A.-M., Moilanen, M., Saarikari, V., Vuorio, K. et al. (2001). What factors control planktonic ciliates during summer in a highly eutrophic lake? Hydrobiologia 443: 43-57. 10.1023/A:1017592019513.
  86. Wielgat-Rychert, M., Rychert, K. & Ficek, D. (2010). Factors controlling pelagic production and respiration in a shallow polymictic lake. Pol. J. Ecol. 58: 379-385.
  87. Wielgat-Rychert, M., Jarosiewicz, A., Ficek, D., Pawlik, M. & Rychert, K. (2015). Nutrient fluxes and their impact on the phytoplankton in a shallow coastal lake. Pol. J. Environ. Stud. 24: 751-759. DOI: 1015244/pjoes/30925.
DOI: https://doi.org/10.1515/ohs-2016-0020 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 216 - 229
Submitted on: Jul 4, 2015
Accepted on: Oct 9, 2015
Published on: Jun 22, 2016
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Krzysztof Rychert, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.