References
- Balmer M.B. & Downing J.A. (2011). Carbon dioxide concentrations in eutrophic lakes: undersaturation imples atmospheric uptake. Inl. Wat. 1: 125-132. DOI: 10.5268/IW-1.2.366.
- Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H. et al. (2006). Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sed. Geol. 185(3-4): 131-145. DOI: 10.1016/j.sedgeo.2005.12.008.
- Bechtel, A., Woszczyk, M., Reischenbacher, D., Sachsenhofer, R.F., Gratzer, R. et al. (2007). Biomarkers and geochemical indicators of Holocene environmental changes in coastal Lake Sarbsko (Poland). Org. Geochem. 38: 1112-1131. DOI: 10.1016/j.orggeochem.2007.02.009.
- Berešić, J., Horvatinčić, N., & Roller-Lutz, Z. (2011). Spatial and seasonal variations in the stable C isotope composition of dissolved inorganic carbon and in physico-chemical water parameters in the Plitvice Lake system. Isot. Envir. Health Stud. 47(3): 316-329. DOI: 10.1080/10256016.2011.596625.
- Berner, R.A. (1971). Principles of chemical sedimentology. New York: McGraw-Hill Book Company.
- Cieśliński, R. (2013). Short-term changes in specific conductivity in Polish coastal lakes (Baltic Sea basin). Oceanologia 55(3): 639-661. DOI: 10.5697/oc.55-3.639.
- Cole, J.J. & Praire, Y.T. (2009). Dissolved CO2. In G.E. Likens (Ed.) Encyclopedia of inland waters. Vol. 2 (pp. 30-34). Oxford, Elsevier.
- de Jonge, V.N. & Villerius, L.A. (1989). Possible role of carbonate dissolution in estuarine phosphate dynamics. Limnol. Oceanogr. 34(2): 332-340. DOI: 10.4319/lo.1989.34.2.0332.
- Dean, W. (1999). The carbon cycle and biogeochemical dynamics in lake sediments. Jour. Paleolim. 21: 375-393. DOI: 10.1023/A:1008066118210.
- Dittrich M. & Koschel, R. (2002). Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469: 49-57. DOI: 10.1023/A:1015571410442.
- Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S. & Visscher, P.T., (2009). Processes of carbonate precipitation in modern microbial mats. Earth Sci. Rev. 96(3): 141-162. DOI: 10.1016/j.earscirev.2008.10.005.
- Eby, G.N. (2004). Principles of environmental geochemistry. Belmont: Brooks/Cole Cenage Learning.
- Eugster, W., Kling, G., Jonas, T., McFadden, J.P., Wüest, A. et al. (2003). CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: importance of convective mixing. Jour. Geophys. Res. 108(12), ACL7-1 – ACL7-19. DOI: 10.1029/2002JD002653.
- Gruber, N., Wehrli, B. & Wüest, A. (2000). The role of biogeochemical cycling for the formation and preservation of varved sediments (Switzerland). Jour. Paleolim. 24: 277-291. DOI: 10.1023/A:1008195604287.
- Gu, B. & Schelske, C.L. (1996). Temporal and spatial variations in phytoplankton carbon isotopes in a polymictic subtropical lake. Jour. Plankt. Res. 18(11): 2081-2092. DOI:10.1093/plankt/18.11.2081.
- Gu, B., Schelske, C.L. & Hodell D.A. (2004). Extreme 13C enrichments in a shallow hypereutrophic lake: Implications for carbon cycling. Limnol. Oceanogr. 49(4): 1152-1159. DOI: 10.4319/lo.2004.49.4.1152.
- Heiri, O., Lotter, A.F. & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments, reproducibility and comparability of results. Jour. Paleolim. 25: 101-110. DOI: 10.1023/A:1008119611481.
- Herczeg, A.L. & Fairbanks, R.G. (1987). Anomalous carbon isotope fractionation between atmospheric CO2 and dissolved inorganic carbon induced by intense photosynthesis. Geochim. Cosmochim. Acta 51: 895-899. DOI: 10.1016/0016-7037(87)90102-5.
- Herczeg, A.L., Leaney, F.W., Dighton, J.C., Lamontagne, S., Schiff, S.L. et al. (2003). A modern isotope record of changes in water and carbon budgets ina agroundwater-fed lake: Blue Lake, South Australia. Limnol. Oceanogr. 48(6): 2093-2105. DOI: 10.4319/lo.2003.48.6.2093.
- Hodell, D.A., Schelske, C.L., Fahnenstiel, G.L. & Robbins, L.L. (1998). Biologically induced calcite and its isotopic composition in Lake Ontario. Limnol. Oceanogr. 43(2): 187-199. DOI: 10.4319/lo.1998.43.2.0187.
- Hollander, D.J. & McKenzie, J.A. (1991). CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer. Geology 19: 929-932. DOI: 10.1130/0091-7613(1991)019<0929:CCOCIF>2.3.CO.
- Jahnke, R.A. & Jahnke, D.B. (2004). Calcium carbonate dissolution in deep sea sediments: reconciling microelectrode, pore water and benthic flux chamber results. Geochim. Cosmochim. Acta 68(1): 47-59. DOI: 10.1016/S0016-7037(03)00260-6.
- Jędrysek, M.O. (2005). Sulphate reduction – methane oxidation: a potential role of this process in the origin of C isotope environmental record in freshwater carbonates. Pol. Geol. Inst. Spec. Papers. 16: 18-34.
- Jonsson, A., Åberg, J., Lindroth, A. & Jansson, M. (2008). Gas transfer rate and CO2 flux between un unproductive lake and the atmosphere in northern Sweden. Jour. Geophys. Res.: Biogeosci. 113(4): G04006. DOI: 10.1029/2008JG000688.
- Ju, J., Zhu, L., Wang, J., Xie, M., Zhen, X. et al. (2010). Water and sediment chemistry of Lake Pumayum Co, South Tibet: implication for interpreting sediment carbonate. Jour. Paleolim., 43: 463-474. DOI: 10.1007/s10933-009-9343-6.
- Kelts, K. & Hsu, K.J. (1978). Freshwater carbonate sedimentation. In A. Lerman (Ed.) Lakes Chemistry Geology Physics (pp. 295-324). New York, Heidelberg, Berlin: Springer-Verlag.
- Lebeau, O., Busigny, V., Chaduteau, C. & Ader, M. (2014). Organic matter removal for the analysis of carbon and oxygen isotope compositions of siderite. Chem. Geol. 372: 54-61. http://dx.doi.org/10.1016/j.chemgeo.2014.02.020.
- Leng, M.J. & Marshall, J.D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediments. Quat. Sci. Rev. 23: 811-831. DOI: 10.1016/j.quascirev.2003.06.012.
- Müller, G., Irion, G. & Förstner, U. (1972) Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften, 59(4): 158-164. DOI: 10.1007/BF00637354.
- Müller, B., Wang, Y., Dittrich, M. & Wehrli, B. (2003). Influence of organic carbon decomposition on calcite dissolution in surficial sediments of a freshwater lake. Wat. Res.. 37: 4524-4532. DOI: 10.1016/S0043-1354(03)00381-6.
- Müller, B., Wang, Y. & Wehrli, B. (2006). Cycling of calcite in hard water lakes of different trophic states. Limnol. Oceanogr. 51(4): 1678-1688. DOI: 10.4319/lo.2006.51.4.1678.
- Myrbo, A. & Shapley M.D. (2006). Sesasonal water-column dynamics of dissolved inorganic carbon ateble isotopic compositions (δ13CDIC) in small hardwater lakes in Minnesota and Montana. Geochim. Cosmoch. Acta 70, 2699-2714. DOI: 10.1016/j.gca.2006.02.010.
- Osadczuk, A. (1999). An estuary or a lagoon? Quat. Sci. Pol. Sp. Issue 175-186.
- Pełechaty, M., Pukacz, A., Apolinarska, K., Pełechata, A. & Siepak, M. (2013). The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60: 1017-1035. DOI: 10.1111/sed.12020.
- Piotrowska, N. & Hałas, S. (2009). Zmiany składu izotopowego węgla i tlenu w jeziorze Wigry jako źródło informacji paleoklimatycznych. In J. Rutkowski & L. Krzysztofiak (Eds.) Jezioro Wigry. Historia jeziora w świetle badań geologicznych i paleoekologicznych (pp. 157-167). Suwałki: Stowarzyszenie ,,Człowiek i Przyroda”.
- Pustelnikovas, O. (1998). Geochemistry of sediments of the Cooronian Lagoon (Baltic Sea). Vilnius, Institute of Geography.
- Ramisch, F., Dittrich, M., Mattenberger, Ch., Wehrli, B. & Wüest, A. (1999). Calcite dissolution in two deep eutrophic lakes. Geochim. Cosmochim. Acta 63(19/20): 3349-3356. DOI: 10.1016/S0016-7037(99)00256-2.
- Shoemaker, J.K. & Schrag, D.P. (2010). Subsurface characterization of methane production and oxidation from a New Hampshire wetland. Geobiology 8: 234-243. DOI: 10.1111/j.1472-4669.2010.00239.x.
- Soetaert, K., Hofmann, A.F., Middleburg, J.J., Meysman, F.J.R. & Greenwood, J. (2007). The effect of biogochemical processes on pH. Mar. Chem. 105: 30-51. DOI: 10.1016/j.marchem.2006.12.012.
- Stockhecke, M., Anselmetti, F.S., Meydan, A.F., Odermatt, D. & Srturm, M. (2012). The annual particle cycle in Lake Van (Turkey). Palaeogeog., Palaeoclim., Palaeoecol. 333-334, 148-159. DOI: 10.1016/j.palaeo.2012.03.022.
- Teranes, J.L., McKenzie, J.A., Lotter, A. & Sturm, M. (1999). Stable isotope response to lake eutrophication: calibration of a hogh-resolution lacustrine sequence from Baldeggersee, Switzerland. Limnol. Oceanogr. 44(2): 320-333. DOI: 10.4319/lo.1999.44.2.0320.
- Tylmann, W. (2007). Pobór i opróbowanie powierzchniowych, silnie uwodnionych osadów jeziornych o nienaruszonej strukturze – uwagi metodyczne i stosowany sprzęt. Przegl. Geol. 55: 151-156.
- Tylmann, W., Szpakowska, K., Ohlendorf, Ch., Woszczyk, M. & Zolitschka, B. (2012). Conditions for deposition of annually laminated sediments in small meromictic lakes: a case study of Lake Suminko (northern Poland). Jour. Paleolim. 47(1): 55-70. DOI 10.1007/s10933-011-9548-3.
- Uścinowicz, S., & Zachowicz, J. (1996). Geochemical atlas of the Vistula Lagoon. Warszawa, Wydawnictwo Kartograficzne PAE.
- Valero-Garcés, B., Morellón, M., Moreno, A., Corella, J.P., Martín-Puertas, C., Barreiro, F., Pérez, A., Giralt, S. & Mata-Campo, M.P. (2014). Lacustrine carbonates of Iberian Karst Lakes: Sources, processes and depositional environments. Sed. Geol. 299: 1-29. DOI: 10.1016/j.sedgeo.2013.10.007.
- Wachniew, P. & Różański, K. (1997). Carbon budget of a mid-lattitude, groundwater-controlled lake: isotopic evidence for the importance of dissolved inorganic carbon cycling. Geochim. Cosmochim. Acta 61(12): 2453-2465. DOI: 10.1016/S0016-7037(97)00089-6.
- Wanninkhof, R. & Knox, M., 1996. Chemical enhancement of CO2 exchange in natural waters. Limnol. Oceanogr. 41(4): 689-697. DOI: 10.4319/lo.1996.41.4.0689.
- Woszczyk, M., Bechtel, A. & Cieśliński, R. (2011). Interactions between microbial degradation of sedimentary organic matter and lake hydrodynamics in shallow water bodies, insights from Lake Sarbsko (northern Poland). Jour. Limnol. 70: 293-304. DOI: 10.3274/JL11-70-2-09.
- Woszczyk, M., Bechtel, A., Gratzer, R., Kotarba, M., Kokociński, M. et al. (2011). Composition and origin of organic matter in surface sediments of Lake Sarbsko: A highly eutrophic and shallow coastal lake (northern Poland). Org. Geochem. 42: 1025-1038. doi:10.1016/j.orggeochem.2011.07.002.
- Woszczyk, M., Spychalski, W., Lutyńska, M. & Cieśliński, R. (2010). Temporal trend In intensity of subsurface saltwater ingressions to a coastal Lake Sarbsko (northern Poland) Turing the last few decades. IOP Conf. Ser. Earth Env. Sci. 9. DOI: 10.1088/1755-1315/9/1/012013.
- Woszczyk, M., Tylmann, W., Jędrasik, J., Szarafin, T., Stach, A. et al. (2014). Recent sedimentation dynamics in a shallow coastal lake (Lake Sarbsko, northern Poland): driving factors, processes and effects. Marine and Freshwater Research 65(12): 1102-1115. http://dx.doi.org/10.1071/MF13336.
- Wu, F.C., Qing, II.R., Wan, G.J., Tang, D.G., Huang, R.G. et al. (1997). Geochemistry of of HCO3- at the sediment-water interface of lakes from the southwestern Chinese plateau. Wat. Air Soil Poll. 99: 381-390. DOI: 10.1023/A:1018331204630.
- Xu, J., Fan, Ch. & Teng, H.H. (2012). Calcite dissolution kinetics in view of Gibbs free energy, dislocation density, and pCO2. Chem. Geol. 322-323, 11-18. DOI: 10.1016/j.chemgeo.2012.04.019.