Have a personal or library account? Click to login
Modelling of a passive autocatalytic hydrogen recombiner – a parametric study Cover

Modelling of a passive autocatalytic hydrogen recombiner – a parametric study

By: Antoni Rożeń  
Open Access
|Mar 2015

Abstract

Operation of a passive autocatalytic hydrogen recombiner (PAR) has been investigated by means of computational fluid dynamics methods (CFD). The recombiner is a self-active and self-adaptive device used to remove hydrogen from safety containments of light water nuclear reactors (LWR) by means of a highly exothermic reaction with oxygen at the surface of a platinum or palladium catalyst. Different turbulence models (k-ω, k-ɛ, intermittency, RSM) were applied in numerical simulations of: gas flow, heat and mass transport and chemical surface reactions occurring in PAR. Turbulence was found to improve mixing and mass transfer and increase hydrogen recombination rate for high gas flow rates. At low gas flow rates, simulation results converged to those obtained for the limiting case of laminar flow. The large eddy simulation technique (LES) was used to select the best RANS (Reynolds average stress) model. Comparison of simulation results obtained for two- and three-dimensional computational grids showed that heat and mass transfer occurring in PAR were virtually two-dimensional processes. The effect of hydrogen thermal diffusion was also discussed in the context of possible hydrogen ignition inside the recombiner.

DOI: https://doi.org/10.1515/nuka-2015-0002 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 161 - 169
Submitted on: Aug 14, 2014
Accepted on: Nov 27, 2014
Published on: Mar 12, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Antoni Rożeń, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.