Have a personal or library account? Click to login
Pseudorandom Dynamic Test Power Signal Modeling and Electrical Energy Compressive Measurement Algorithm Cover

Pseudorandom Dynamic Test Power Signal Modeling and Electrical Energy Compressive Measurement Algorithm

By: Xuewei Wang and  Jing Wang  
Open Access
|Oct 2018

References

  1. [1] Kukuča, P., Chrapčiak, I. (2016). From smart metering to smart grid. Measurement Science Review, 16 (3), 142-148.10.1515/msr-2016-0017
  2. [2] Lao, K.-W., Wong, M.-C., Dai, N., Wong, C.-K., Lam, C.-S. (2015). A systematic approach to hybrid railway power conditioner design with harmonic compensation for high-speed railway. IEEE Transactions on Industrial Electronics, 62 (2), 930-942.10.1109/TIE.2014.2341577
  3. [3] Bernieri, A., Betta, G., Ferrigno, L., Laracca, M., Moriello, R.S.L. (2013). Electrical energy metering: Some challenges of the European Directive on Measuring Instruments (MID). Measurement, 46 (9), 3347-3354.10.1016/j.measurement.2013.06.025
  4. [4] Artale, G., Cataliotti, A., Cosentino, V., Cara, D.D., Nuccio, S., Tine, G. (2017). Arc fault detection method based on CZT low-frequency harmonic current analysis. IEEE Transactions on Instrumentation and Measurement, 66 (5), 2232 -2239.10.1109/TIM.2016.2627248
  5. [5] Wang, X.W., Chen, J.X., Yuan, R.M., Jia, X.L., Zhu, M., Jiang, Z.Y. (2017). OOK power model based dynamic error testing for smart electricity meter. Measurement Science and Technology, 28 (2), 025015.10.1088/1361-6501/aa5067
  6. [6] OIML. (2006). Instruments for measuring electrical quantities, IR46.
  7. [7] International Electrotechnical Commission (IEC). (2003). Electricity metering equipment (a.c.) - Particular requirements - Part 21: Static meters for active energy (classes 1 and 2). International Standard IEC 62053-21.
  8. [8] Cataliotti, A., Cosentino, V., Lipari, A., Nuccio, S. (2009). Metrological characterization and operating principle identification of static meters for reactive energy: An experimental approach under nonsinusoidal test conditions. IEEE Transactions on Instrumentation and Measurement, 58 (5), 1427-1435.10.1109/TIM.2008.2009134
  9. [9] Georgakopoulos, D., Wright, P.S. (2007). Exercising the dynamic range of active power meters under nonsinusoidal conditions. IEEE Transactions on Instrumentation and Measurement, 56 (2), 369-372.10.1109/TIM.2007.890596
  10. [10] IEEE. (2010). IEEE 1459-2010 IEEE Standard: Definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions.
  11. [11] Cataliotti, A., Cosentino, V., Nuccio, S. (2008). A virtual instrument for the measurement of IEEE Std. 1459-2000 power quantities. IEEE Transactions on Instrumentation and Measurement, 57 (1), 85-94.
  12. [12] Lu, Z.L., Li, M., Zhu, Z.Z., Zheng, J.Z., Wang, L., Eddy, S. (2012). Evaluation of the dynamic performance characteristic of electrical energy meters. In Conference on Precision Electromagnetic Measurements (CPEM), 1-6 July 2012, Washington, DC, USA.10.1109/CPEM.2012.6250690
  13. [13] Huang, H.T., Lu, Z.L., Wang, L., Liu, L.J., Jia, Z.S., Huang, Q.L., Peng, X.J., Pan, Y. (2016). Dynamical waveforms and the dynamical source for electricity meter dynamical experiment. In Conference on Precision Electromagnetic Measurements (CPEM), 10-15 July 2016, Ottawa, Canada.10.1109/CPEM.2016.7540737
  14. [14] Dix, C.H. (1982). Calculated performance of a digital sampling wattmeter using systematic sampling. IEE Proceedings A - Physical Science, Measurement and Instrumentation, Management and Education - Reviews, 129 (3), 172-175.10.1049/ip-a-1.1982.0028
  15. [15] Dai, X.Z., Tang, T., Gretsch, R. (1993). Quasisynchronous sampling algorithm and its applications I. Principle and measurement of 'average' values of periodic signal. In IEEE Instrumentation and Measurement Technology Conference, 18-20 May 1993. IEEE, 88-93.10.1109/IMTC.1993.382674
  16. [16] Voloshko, A.V., Kotsar, O.I., Malik, O.P. (1995). An approach to the design of digital algorithms for measuring power consumption characteristic. IEEE Transactions on Instrumentation and Measurement, 10 (2), 607-612.10.1109/61.400871
  17. [17] Daniel, B., Dario, P. (2016). Accuracy analysis of the sine-wave parameters estimation by means of the windowed three-parameter sine-fit algorithm. Digital Signal Processing, 50, 12-23.10.1016/j.dsp.2015.11.008
  18. [18] Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52 (4), 1289-1306.10.1109/TIT.2006.871582
  19. [19] Candes, E.J., Romberg, J., Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52 (2), 489-509.10.1109/TIT.2005.862083
  20. [20] Yang, J.B ., Liao, X.J., Yuan, X., Llull, P., Brady, D.J., Sapiro, G., Carin, L. (2015). Compressive sensing by learning a Gaussian mixture model from measurements. IEEE Transactions on Image Processing, 24 (1), 106-119.10.1109/TIP.2014.236572025361508
  21. [21] Zahedi, R., Krakow, L.W., Chong, E.K.P., Pezeshki, A. (2013). Adaptive compressive measurement design using approximate dynamic programming. In American Control Conference (ACC), 17-19 June, 2013, Washington, DC, USA, 2442-2447.10.1109/ACC.2013.6580200
  22. [22] Bertocco, M., Frigo, G., Narduzzi, C., Tramarin, F. (2014). Resolution enhancement by compressive sensing in power quality and phasor measurement. IEEE Transactions on Instrumentation and Measurement, 63 (10), 2358-2367.10.1109/TIM.2014.2321465
  23. [23] Du, Z.H., Chen, X.F., Zhang, H., Miao, H.H., Guo, Y.J., Yang, B.Y. (2016). Feature identification with compressive measurements for machine fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 65 (5), 977-987.10.1109/TIM.2016.2521223
  24. [24] Yang, G., Tan, V.Y.F., Ho, C.K., Ting, S.H., Guan, Y.L. (2013). Wireless compressive sensing for energy harvesting sensor nodes. IEEE Transactions on Signal Processing, 61 (18), 4491-4505.10.1109/TSP.2013.2271480
  25. [25] Atia, G.K. (2015). Change detection with compressive measurements. IEEE Signal Processing Letters, 22 (2), 182-186.10.1109/LSP.2014.2352116
  26. [26] Mendelson, S., Pajor, A., Tomczak-Jaegermann, N. (2008). Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constructive Approximation, 28 (3), 277-289.10.1007/s00365-007-9005-8
  27. [27] Haupt, J., Bajwa, W., Raz, G., Nowak, R. (2010). Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory, 56 (11), 5862-5875.10.1109/TIT.2010.2070191
  28. [28] Candes, E., Romberg, J. (2007). Sparsity and incoherence in compressive sampling. Inverse Problems, 23 (3), 969-985.10.1088/0266-5611/23/3/008
  29. [29] Yan, W.J., Wang, Q., Shen, Y. (2014). Shrinkage- Based alternating projection algorithm for efficient measurement matrix construction in compressive sensing. IEEE Transactions on Instrumentation and Measurement, 63 (5), 1073-1084.10.1109/TIM.2014.2298271
  30. [30] Yu, Y., Petropulu, A.P., Poor, H.V. (2011). Measurement matrix design for compressive sensing- based MIMO radar. IEEE Transactions on Signal Processing, 59 (11), 5338-5352.10.1109/TSP.2011.2162328
  31. [31] Li, G., Zhu, Z.H., Yang, D.H., Chang, L.P., Bai, H. (2013). On projection matrix optimization for compressive sensing systems. IEEE Transactions on Signal Processing, 61 (11), 2887-2898.10.1109/TSP.2013.2253776
  32. [32] Davenport, M., Boufounos, P., Wakin, M., Baraniuk, R. (2010). Signal processing with compressive measurements. IEEE Journal of Selected Topics in Signal Processing, 4 (2), 445-460.10.1109/JSTSP.2009.2039178
  33. [33] Park, J.Y., Wakin, M., Gilbert, A. (2014). Modal analysis with compressive measurements. IEEE Transactions on Signal Processing, 62 (7), 1655-1670.10.1109/TSP.2014.2302736
  34. [34] Agrež, D. (2010). Estimation and tracking of the power quality disturbances in the frequency domain. Measurement Science Review, 10 (6), 189-194.10.2478/v10048-010-0032-4
  35. [35] Alizadeh, M., Scaglione, A., Applebaum, A., Kesidis, G., Levitt, K. (2015). Reduced-Order load models for large populations of flexible appliances. IEEE Transactions on Power Systems, 30 (4), 1758-1774.10.1109/TPWRS.2014.2354345
  36. [36] Kabalci, E., Kabalci, Y. (2013). A measurement and power line communication system design for renewable smart grids. Measurement Science Review, 13 (5), 248-252.10.2478/msr-2013-0037
  37. [37] Duy, T.N. (2015). Modeling load uncertainty in distribution network monitoring. IEEE Transactions on Power Systems, 30 (5), 2321-2328.
  38. [38] Petersen, H.M., Koch, R.G., Swart, P.H., Heerden, R.V. (1995). Modeling arc furnace flicker and investigating compensation techniques. In Industry Applications Conference, 8-12 October, 1995. IEEE, 1733-1740.
  39. [39] Yang, S.B., Wu, M.L., Yao, X., Jiang, J.C. (2015). Load modeling and identification based on ant colony algorithms for EV charging stations. IEEE Transactions on Power Systems, 30 (4), 1997-2003.10.1109/TPWRS.2014.2352263
  40. [40] Zepernick, H.J., Finger, A. (2005). Pseudo Random Signal Processing: Theory and Application. Wiley.10.1002/9780470866597
Language: English
Page range: 207 - 217
Submitted on: Jan 25, 2018
|
Accepted on: Sep 24, 2018
|
Published on: Oct 17, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2018 Xuewei Wang, Jing Wang, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.