Have a personal or library account? Click to login

Measuring and evaluating the differences of compared images for a correct car silhouette categorization using integral transforms

Open Access
|Aug 2018

References

  1. [1] Stylidis, K., Wickman, C., Söderberg, R. (2015). Defining perceived quality in the automotive industry: An engineering approach. Procedia CIRP, 36 (2015), 165-170.
  2. [2] Bogue, R. (2013). Robotic vision boosts automotive industry quality and productivity. Industrial Robot: An International Journal, 40 (5), 415-419.10.1108/IR-04-2013-342
  3. [3] Di Leo, G., Liguori, C., Pietrosanto, A., Sommella, P. (2017). A vision system for the online quality monitoring of industrial manufacturing. Optics and Lasers in Engineering, 89, 162-168.10.1016/j.optlaseng.2016.05.007
  4. [4] Ružarovský, R., Delgado Sobrino, D.R., Holubek, R., Košťál, P. (2014). Automated in-process inspection method in the flexible production system iCIM 3000. Applied Mechanics and Materials, 693, 50-55.10.4028/www.scientific.net/AMM.693.50
  5. [5] Božek, P., Pivarčiová, E. (2013). Flexible manufacturing system with automatic control of product quality. Strojarstvo, 55 (3), 211-221.
  6. [6] Mery, D., Jaeger, T., Filbert, D. (2002). A review of methods for automated recognition of casting defects. http://www.academia.edu/20111824/A_review_of_methods_for_automated_recognition_of_casting_defects.
  7. [7] Świłło, S.J., Perzyk, M. (2013). Surface casting defects inspection using vision system and neural network techniques. Archives of Foundry Engineering, 13 (4).10.2478/afe-2013-0091
  8. [8] Dhillon, B.S. (2009). Human Reliability, Error, and Human Factors in Engineering Maintenance. CRC Press.10.1201/9781439803844
  9. [9] Huang, S.-H., Pan, Y-Ch. (2015). Automated visual inspection in the semiconductor industry: A survey. Computers in Industry, 66, 1-10.10.1016/j.compind.2014.10.006
  10. [10] Frankovský, P., Ostertag, O., Trebuňa, F., Ostertagová, E., Kelemen, M. (2016). Methodology of contact stress analysis of gearwheel by means of experimental photoelasticity. Applied Optics, 55 (18), 4856-4864.10.1364/AO.55.00485627409110
  11. [11] Kováč, J., Ďurovský, F., Hajduk, M. (2014). Utilization of virtual reality connected with robotized system. Applied Mechanics and Materials, 613, 273-278.10.4028/www.scientific.net/AMM.613.273
  12. [12] Frankovský, P., Hroncová, D., Delyová, I., Hudák, P. (2012). Inverse and forward dynamic analysis of two link manipulator. Procedia Engineering, 48, 158-163.10.1016/j.proeng.2012.09.500
  13. [13] Abramov, I.V., Nikitin, Yu.R., Abramov, A.I., Sosnovich, E.V., Božek, P. (2014). Control and diagnostic model of brushless DC motor. Journal of Electrical Engineering, 65 (5), 277- 282.10.2478/jee-2014-0044
  14. [14] Jena, D.B., Kuma, R. (2011). Implementation of wavelet denoising and image morphology on welding image for estimating HAZ and welding defect. Measurement Science Review, 11, (4).10.2478/v10048-011-0020-3
  15. [15] Neogi, N. Mohanta, K.D., Dutta, K.P. (2014). Review of vision-based steel surface inspection systems. EURASIP Journal on Image and Video Processing, 2014 (50).10.1186/1687-5281-2014-50
  16. [16] Ito, K., Nakajima, H., Kobayashi, K., Aoki, T., Higuchi, T. (2004). A fingerprint matching algorithm using Phase-Only Correlation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E87-A (3), 682-691.
  17. [17] Carl Zeiss Ltd. (2018). 3D inline measuring technology from ZEISS. https://www.zeiss.co.uk.
  18. [18] Druckmüller, M., Antoš, M., Druckmüllerová, H. (2005). Mathematical methods for visualization of the solar corona. Jemná mechanika a optika, 10, 302-304.
  19. [19] van den Dool, R. (2004). Fourier and Mellin Transform. Image Processing Tools. www.scribd.com/doc/9480198/Tools-Fourier-Mellin-Transform.
  20. [20] Derrode, S., Ghorbel, F. (2001). Robust and efficient Fourier-Mellin transform approximations for graylevel image reconstruction and complete invariant description. Computer Vision and Image Understanding, 83 (1), 57-78.10.1006/cviu.2001.0922
  21. [21] Gueham, M., Bouridane, A., Crookes, D. (2007). Automatic recognition of partial shoeprints based on phase-only correlation. In IEEE International Conference on Image Processing. IEEE, Vol. 4, 441-444.
  22. [22] Chen, Q.S. (1993). Image registration and its applications in medical imaging. Dissertation work, Vrije University, Brussels, Belgium.
  23. [23] Slížik, J., Harťanský, R. (2012). Metrology of electromagnetic intensity measurement in near field. Quality Innovation Prosperity, 17 (1), 57-66.
  24. [24] Hallon, J., Kováč, K., Bittera, M. (2018). Comparison of coupling networks for EFT Pulses Injection. Przeglad elektrotechniczny, 94 (2), 17-20.10.15199/48.2018.02.05
  25. [25] Harťanský, R., Smieško, V., Rafaj, M. (2017). Modifying and accelerating the method of moments calculation. Computing and Informatics, 36 (3), 664-682.10.4149/cai_2017_3_664
Language: English
Page range: 168 - 174
Submitted on: Apr 17, 2018
Accepted on: Jul 18, 2018
Published on: Aug 14, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2018 Elena Pivarčiová, Daynier Rolando Delgado Sobrino, Yury Rafailovich Nikitin, Radovan Holubek, Roman Ružarovský, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.