Have a personal or library account? Click to login

Application of conditional averaging to time delay estimation of random signals

Open Access
|Aug 2018

References

  1. [1] Bendat, J.S., Piersol, A.G. (2010). Random Data: Analysis and Measurement Procedures (Fourth Edition). Wiley.
  2. [2] Assous, S., Linnett, L. (2012). High resolution time delay estimation using sliding discrete Fourier transform. Digital Signal Processing, 22, 820-827.10.1016/j.dsp.2012.05.001
  3. [3] Waschburger, R., Kawakami, R., Galvao, H. (2013). Time delay estimation in discrete-time state-space models. Signal Processing, 93, 904-912.10.1016/j.sigpro.2012.10.017
  4. [4] Jacovitti, G., Scarano, G. (1993). Discrete time technique for time delay estimation. IEEE Transactions on Signal Processing, 41 (2), 525-533.10.1109/78.193195
  5. [5] Chen, J., Benesty, J., Huang, Y. (2006). Time delay estimation in room acoustic environments: An overview. EURASIP Journal on Advances in Signal Processing, 2006, 026503.10.1155/ASP/2006/26503
  6. [6] Hanus, R., Zych, M., Petryka, L., Świsulski, D. (2014). Time delay estimation in two-phase flow investigation using the γ-ray attenuation technique. Mathematical Problems in Engineering, 2014, 475735.10.1155/2014/475735
  7. [7] Chen, J., Huang, Y., Benesty, J. (2004). Time delay estimation. In Audio Signal Processing for Next- Generation Multimedia Communication Systems. Springer, 197-227.10.1007/1-4020-7769-6_8
  8. [8] Blok, E. (2002). Classification and evaluation of discrete subsample time delay estimation algorithms. In 14th International Conference on Microwaves, Radar and Wireless Communications (MIKON-2002), May 20-22, 2002. IEEE, 764-767.10.1109/MIKON.2002.1017953
  9. [9] So, H.C. (2001). On time delay estimation using an FIR filter. Signal Processing, 81, 1777-1782.10.1016/S0165-1684(01)00098-6
  10. [10] Zych, M., Hanus, R., Vlasak, P., Jaszczur, M., Petryka, L. (2017). Radiometric methods in the measurement of particle-laden flows. Powder Technology, 318, 491-500.10.1016/j.powtec.2017.06.019
  11. [11] Mosorov, V. (2008). Flow pattern tracing for mass flow rate measurement in pneumatic conveying using twin plane electrical capacitance tomography. Particle & Particle Systems Characterization, 25 (3), 259-265.10.1002/ppsc.200700034
  12. [12] Zhang, L., Wu, X. (2006). On the application of cross correlation function to subsample discrete time delay estimation. Digital Signal Processing, 16, 682-694.10.1016/j.dsp.2006.08.009
  13. [13] Beck, M.S., Pląskowski, A. (1987). Cross-Correlation Flowmeters. CRC Press.
  14. [14] Mosorov, V. (2006). Phase spectrum method for time delay estimation using twin-plane electrical capacitance tomography. Electronics Letters, 42 (11), 630-632.10.1049/el:20060338
  15. [15] Hanus, R., Zych, M., Petryka, L., Mosorov, V., Hanus, P. (2015). Application of the phase method in radioisotope measurements of the liquid - solid particles flow in the vertical pipeline. EPJ Web of Conferences, 92, 02020.10.1051/epjconf/20159202020
  16. [16] Hanus, R. (2015). Application of the Hilbert Transform to measurements of liquid-gas flow using gamma ray densitometry. International Journal of Multiphase Flow, 72, 210-217.10.1016/j.ijmultiphaseflow.2015.02.002
  17. [17] Shors, S.M., Sahakian, A.V., Sih, H.J., Swiryn, S. (1996). A method for determining high-resolution activation time delays in unipolar cardiac mapping. IEEE Transactions on Biomedical Engineering, 43 (12), 1192-1196.10.1109/10.5443439214838
  18. [18] Hanus, R. (2001). Accuracy comparison of some statistic methods of time delay measurements. Systems Analysis Modelling Simulation, 40 (2), 239-244.
  19. [19] Kowalczyk, A., Szlachta, A. (2010). The application of conditional averaging of signals to obtain the transportation delay. Przegląd Elektrotechniczny, 86(1), 225-228. (in Polish)
  20. [20] Kowalczyk, A., Hanus, R., Szlachta, A. (2011). Time delay estimation of stochastic signals using conditional averaging. In 8th International Conference on Measurement (Measurement 2011), April 27-30, 2011. Bratislava, Slovakia: Institute of Measurement Science SAS, 32-37.
  21. [21] Kowalczyk, A., Szlachta, A., Hanus, R., Chorzępa, R. (2017). Estimation of conditional expected value for exponentially autocorrelated data. Metrology and Measurement Systems, 24 (1), 69-78.10.1515/mms-2017-0005
  22. [22] Hanus, R. (2010). Standard uncertainty comparison of time delay estimation using cross-correlation function and the function of conditional average value of the absolute value of delayed signal. Przegląd Elektrotechniczny, 86 (6), 232-235. (in Polish)
  23. [23] Kowalczyk, A., Hanus, R., Szlachta, A. (2011). Investigation of the statistical method of time delay estimation based on conditional averaging of delayed signal. Metrology and Measurement Systems, 18 (2), 335-342.10.2478/v10178-011-0015-3
  24. [24] Szlachta, A., Hanus, R., Kowalczyk, A. (2011). Virtual instrument for the estimation of the time delay using conditional averaging of random signals. In International Workshop on ADC Modelling, Testing and Data Converter Analysis and Design and IEEE 2011 ADC Forum, June 30 - July 1, 2011. IMEKO, 81-86.
  25. [25] Kowalczyk, A., Hanus, R., Szlachta, A. (2016). Time delay measurement method using conditional averaging of the delayed signal module. Przegląd Elektrotechniczny, 92 (9), 279-282.10.15199/48.2016.09.66
  26. [26] Hanus, R., Szlachta, A., Kowalczyk, A., Petryka, L., Zych, M. (2012). Radioisotope measurement of twophase flow in pipeline using conditional averaging of signal. In 16th IEEE Mediterranean Electrotechnical Conference (MELECON 2012), March 25-28, 2012. IEEE, 144-147.10.1109/MELCON.2012.6196400
  27. [27] Hanus, R., Zych, M., Kowalczyk, A., Petryka, L. (2015). Velocity measurements of the liquid-gas flow using gamma absorption and modified conditional averaging. EPJ Web of Conferences, 92, 02021.10.1051/epjconf/20159202021
Language: English
Page range: 130 - 137
Submitted on: Feb 2, 2018
Accepted on: Jul 16, 2018
Published on: Aug 14, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2018 Robert Hanus, Adam Kowalczyk, Rafał Chorzępa, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.