Have a personal or library account? Click to login
The Influence of Measurement Methodology on the Accuracy of Electrical Waveform Distortion Analysis Cover

The Influence of Measurement Methodology on the Accuracy of Electrical Waveform Distortion Analysis

Open Access
|Apr 2018

References

  1. [1] Shmilovitz, D. (2005). On the definition of total harmonic distortion and its effect on measurement interpretation. IEEE Transactions on Power Delivery, 20 (1), 526-528.
  2. [2] Binkowski, T. (2016). Influence of current sampling frequency on voltage source inverter fuzzy correction. In 13th Selected Issues of Electrical Engineering and Electronics (WZEE). IEEE.10.1109/WZEE.2016.7800216
  3. [3] Kamuda, K., Klepacki, D., Kuryło, K. Sabat, W. (2015). Statistical analysis of influence of the low-power nonlinear loads on deformation of supply voltage. Przegląd Elektrotechniczny, 91 (8), 19-22. (in Polish)
  4. [4] Sobczynski, D. (2015). A concept of a power electronic converter for a BLDC motor drive system in aviation. Aviation, 19 (1), 36-39.10.3846/16487788.2015.1015294
  5. [5] Rezmer, J., Leonowicz, Z., Gono, R. (2011). Analysis of distorted waveform in power converter systems. Przegląd Elektrotechniczny, 87 (1), 254-257.
  6. [6] Bartman, J. (2017). The analysis of output voltage distortion of inverter for frequency lower than the nominal. Journal of Electrical Engineering, 68 (3), 194-199.10.1515/jee-2017-0028
  7. [7] Hanzelka, Z., Bień, A. (2004). Harmonics. Interharmonics. Power Quality Application Guide 3.1.1., Copper Development Association.
  8. [8] Bartman, J. (2016). Accuracy of reflecting the waveforms of current and voltage through their spectrum determined by the standards regulating measurements. Revue Roumaine des Sciences Techniques - Serie Électrotechnique et Énergétique, 61 (4), 355-360.
  9. [9] International Electrotechnical Commission. (2015). Electromagnetic compatibility (EMC) – Part 4-30: Testing and measurement techniques – Power quality measurement methods. IEC 61000-4-30: 2015 RLV.
  10. [10] International Electrotechnical Commission. (2002). Electromagnetic compatibility (EMC) – Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto. IEC 61000-4-7: 2002(E).
  11. [11] Bollen, M., Olofsson, M., Larsson, A., Ronnberg, S., Lundmark, M. (2014). Standards for supraharmonics (2 to 150 kHz). IEEE Electromagnetic Compatibility Magazine, 3 (1), 114-119.10.1109/MEMC.2014.6798813
  12. [12] Leszczyński, J. (2010). Research on the quality of electricity: A comparative analysis of methods and regulations. Prace Naukowe: Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej: Studia i Materiały, 30, 520-534. (in Polish)
  13. [13] Bartman, J., Koziorowska, A., Kuryło, K., Malska, W. (2011). Analysis of the real electric parameters feed water-pump drive systems. Przegląd Elektrotechniczny, 87 (8), 8-11. (in Polish)
  14. [14] Koziorowska, A., Bartman, J. (2014). The influence of reactive power compensation on the content of higher harmonics in the voltage and current waveforms. Przegląd Elektrotechniczny, 90 (1), 136-140.
  15. [15] Lin, W. (2012). Current harmonics and interharmonics measurement using Recursive Group-Harmonic Current Minimizing Algorithm. IEEE Transactions on Industrial Electronics, 59 (2), 1184-1193.10.1109/TIE.2011.2157281
  16. [16] Pawłowski, M. (2010). Basics of harmonic analysis of distorted currents and voltages in power supply networks. Mechanizacja i Automatyzacja Górnictwa, 7, 17-23. (in Polish)
  17. [17] Petrović, P. (2012). Frequency and parameter estimation of multi-sinusoidal signal. Measurement Science Review, 12 (5), 175-183.10.2478/v10048-012-0027-4
  18. [18] Knežević, J.M., Katić, V.A. (2011). The hybrid method for on-line harmonic analysis. Advances in Electrical and Computer Engineering, 11 (3), 29-34.10.4316/aece.2011.03005
  19. [19] Chapman, D. (2001). Harmonics: Causes and effects. Power Quality Application Guide 3.1., Copper Development Association.
  20. [20] Antić, B.M., Mitrović, Z.L., Vujičić, V.V. (2012), A method for harmonic measurement of real power grid signals with frequency drift using instruments with internally generated reference frequency. Measurement Science Review, 12 (6), 277-285.10.2478/v10048-012-0038-1
  21. [21] Shmilovitz, D., Duan, J., Czarkowski, D., Zabar, Z., Lee, S. (2007). Characteristics of modern nonlinear loads and their influence on systems with distributed generation. International Journal Energy Technology and Policy, 5 (2), 219-240.10.1504/IJETP.2007.013033
  22. [22] Koziorowska, A. Bartman, J. (2012), A-model as a way of squirrel cage induction motor modelling used in pumps drive systems. International Journal of Numerical Modelling, 25, 103-114.10.1002/jnm.814
  23. [23] Mindykowski, J. (2016). Case study based overview of some contemporary challenges to power quality in ship systems. Inventions, 1 (2), 12.10.3390/inventions1020012
  24. [24] Tarasiuk, T., Mindykowski, J. (2015). Problem of power quality in the wake of ship technology development. Ocean Engineering, 107, 108-117.10.1016/j.oceaneng.2015.07.036
  25. [25] Kus, V., Josefova, T. (2017). Study of the input current harmonic distortion of voltage-source active. Revue Roumaine des Sciences Techniques - Serie Électrotechnique et Énergétique, 62 (2), 185-191.
  26. [26] Bartman, J. (2018). Evaluating the level of waveform distortion. In Analysis and Simulation of Electrical and Computer Systems. Springer, 305-318.10.1007/978-3-319-63949-9_19
Language: English
Page range: 72 - 78
Submitted on: Sep 30, 2017
|
Accepted on: Mar 20, 2018
|
Published on: Apr 4, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2018 Jacek Bartman, Bogdan Kwiatkowski, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.