[3] Atkey, R., Ghani, N., Forsberg, F. N., Revell, T., Staton, S. (2015). Models for polymorphism over physical dimensions. In 13th International Conference on Typed Lambda Calculi and Applications (TLCA’15), 999-1013.
[7] Feller, U. (2011). The International System of Units- a case for reconsideration. Accreditation and Quality Assurance, 16, 143-153.10.1007/s00769-010-0747-9
[8] Foster, M. (2010). The next 50 years of the SI: A review of the opportunities for the e-Science age. Metrologia, 47, R41-R51.10.1088/0026-1394/47/6/R01
[9] Johansson, I. (2010). Metrological thinking needs the notions of parametric quantities, units and dimensions. Metrologia, 47, 219-230.10.1088/0026-1394/47/3/012
[10] Barrow, J.D., Gibbons, G.W. (2017). Maximum magnetic moment to angular momentum conjecture. Physical Review D ,95, 064040.10.1103/PhysRevD.95.064040
[11] Kostro, L. (2010). The physical meaning of the coefficients cn=G (n = 1;2; : : : 5) and the Standard Model of the Universe. AIP Conference Proceedings, 1316 (1), 165-179.
[12] Joint Committee for Guides in Metrology. (2012). International vocabulary of metrology - Basic and general concepts and associated terms (VIM). 3rd edition. JCGM 200:2012.
[17] Buckingham, E. (1914). On physically similar systems: Illustrations of the use of dimensional equations. Physical Review, 4, 345-376.10.1103/PhysRev.4.345
[19] Fleischmann, R. (1959/60). Einheiteninvariante Größengleichungen, Dimensionen. Der Mathematische und Naturwissenschaftliche Unterricht, 12, 385-443.
[20] Quade, W. (1961). Über die algebraische Struktur des Größenkalküls der Physik. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 13, 24-65. (Translated as an appendix to Dimensional Analysis for Economists by F.J. de Jong, Amsterdam: North Holland Publishing Company, 1967)
[22] Whitney, H. (1968). The mathematics of physical quantities: Part II: Quantity structures and dimensional analysis. The American Mathematical Monthly, 75 (3), 227-256.10.1080/00029890.1968.11970972
[23] Carlson, D. (1979). A mathematical theory of physical units, dimensions and measures. Archive for Rational Mechanics and Analysis, 70, 289-304.10.1007/BF00281156
[24] Giorgi, G. (1904). Proposals concerning electrical and physical units. In Transactions of the International Electrical Congress: St. Louis, 1904. Albany, N.Y.: J.B. Lyon Company, 136-141.
[27] Lainscsek, C., Gorodnitsky, I. (2003). Planck’s natural units are contained in a time series. AIP Conference Proceedings, 676 (1), 370-371.10.1063/1.1612250
[29] Domotor, Z. (2016). An algebraic approach to unital quantities and their measurement. Measurement Science Review, 16 (3), 103-126.10.1515/msr-2016-0014