Have a personal or library account? Click to login

The Algebraic Structure of Quantity Calculus

Open Access
|Aug 2018

References

  1. [1] Kitano, M. (2013). Mathematical structure of unit systems. Journal of Mathematical Physics, 54, 052901.10.1063/1.4802876
  2. [2] Krystek, M. (2015). The term ’dimension’ in the international system of units. Metrologia, 52, 297-300.10.1088/0026-1394/52/2/297
  3. [3] Atkey, R., Ghani, N., Forsberg, F. N., Revell, T., Staton, S. (2015). Models for polymorphism over physical dimensions. In 13th International Conference on Typed Lambda Calculi and Applications (TLCA’15), 999-1013.
  4. [4] Domotor, Z. (2017). Torsor theory of physical quantities and their measurement. Measurement Science Review, 17 (4), 152-177.10.1515/msr-2017-0019
  5. [5] Mills, I. (2016). On the units radian and cycle for the quantity plane angle. Metrologia, 53, 991-997.10.1088/0026-1394/53/3/991
  6. [6] Mari, L., Giordani, A. (2012). Quantity and quantity value. Metrologia, 49, 756-764.10.1088/0026-1394/49/6/756
  7. [7] Feller, U. (2011). The International System of Units- a case for reconsideration. Accreditation and Quality Assurance, 16, 143-153.10.1007/s00769-010-0747-9
  8. [8] Foster, M. (2010). The next 50 years of the SI: A review of the opportunities for the e-Science age. Metrologia, 47, R41-R51.10.1088/0026-1394/47/6/R01
  9. [9] Johansson, I. (2010). Metrological thinking needs the notions of parametric quantities, units and dimensions. Metrologia, 47, 219-230.10.1088/0026-1394/47/3/012
  10. [10] Barrow, J.D., Gibbons, G.W. (2017). Maximum magnetic moment to angular momentum conjecture. Physical Review D ,95, 064040.10.1103/PhysRevD.95.064040
  11. [11] Kostro, L. (2010). The physical meaning of the coefficients cn=G (n = 1;2; : : : 5) and the Standard Model of the Universe. AIP Conference Proceedings, 1316 (1), 165-179.
  12. [12] Joint Committee for Guides in Metrology. (2012). International vocabulary of metrology - Basic and general concepts and associated terms (VIM). 3rd edition. JCGM 200:2012.
  13. [13] de Boer, J. (1994). On the history of quantity calculus and the international system. Metrologia, 31, 405-429.10.1088/0026-1394/31/6/001
  14. [14] Fourier, J.B.J. (1822). Théorie analytique de la Chaleur. Paris: Chez Firmin Didot, père et fils.
  15. [15] Hallock, W., Wade, H.T. (1906). Outlines of the Evolution of Weights and Measures and the Metric System. The Macmillan Company.
  16. [16] Maxwell, J. (1873). Treatise on Electricity and Magnetism. Oxford University Press.
  17. [17] Buckingham, E. (1914). On physically similar systems: Illustrations of the use of dimensional equations. Physical Review, 4, 345-376.10.1103/PhysRev.4.345
  18. [18] Landolt, M. (1945). Größe, Maßzahl und Einheit. Rascher Verlag Zurich. (French Translation - Paris: Dunod, 1947)
  19. [19] Fleischmann, R. (1959/60). Einheiteninvariante Größengleichungen, Dimensionen. Der Mathematische und Naturwissenschaftliche Unterricht, 12, 385-443.
  20. [20] Quade, W. (1961). Über die algebraische Struktur des Größenkalküls der Physik. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 13, 24-65. (Translated as an appendix to Dimensional Analysis for Economists by F.J. de Jong, Amsterdam: North Holland Publishing Company, 1967)
  21. [21] Drobot, S. (1953). On the foundations of dimensional analysis. Studia Mathematica, 14, 84-99.10.4064/sm-14-1-84-99
  22. [22] Whitney, H. (1968). The mathematics of physical quantities: Part II: Quantity structures and dimensional analysis. The American Mathematical Monthly, 75 (3), 227-256.10.1080/00029890.1968.11970972
  23. [23] Carlson, D. (1979). A mathematical theory of physical units, dimensions and measures. Archive for Rational Mechanics and Analysis, 70, 289-304.10.1007/BF00281156
  24. [24] Giorgi, G. (1904). Proposals concerning electrical and physical units. In Transactions of the International Electrical Congress: St. Louis, 1904. Albany, N.Y.: J.B. Lyon Company, 136-141.
  25. [25] Bridgman, P. (1922). Dimensional Analysis. Yale University Press.
  26. [26] Rotman, J. (1995). An Introduction to the Theory of Groups, 4th edition. Springer.
  27. [27] Lainscsek, C., Gorodnitsky, I. (2003). Planck’s natural units are contained in a time series. AIP Conference Proceedings, 676 (1), 370-371.10.1063/1.1612250
  28. [28] Domotor, Z. (2012). Algebraic frameworks for measurement in the natural sciencies. Measurement Science Review, 12 (6), 213-233.
  29. [29] Domotor, Z. (2016). An algebraic approach to unital quantities and their measurement. Measurement Science Review, 16 (3), 103-126.10.1515/msr-2016-0014
Language: English
Page range: 147 - 157
Submitted on: Jan 19, 2018
Accepted on: Jul 15, 2018
Published on: Aug 14, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2018 Álvaro P. Raposo, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.