Have a personal or library account? Click to login
An Experiment to Prove the Effect of Low-Level Magnetic Fields Resulting from Ionospheric Changes on Humans Cover

An Experiment to Prove the Effect of Low-Level Magnetic Fields Resulting from Ionospheric Changes on Humans

Open Access
|Feb 2017

References

  1. [1] Ferris, J. (2010). The brain generates an electric field that influences its own activity. Scientific American Mind, 21 (10).
  2. [2] Unakafov, A. (2009). Analysis and modeling of the galvanic skin response spontaneous component in the context of intelligent biofeedback systems development. Measurement Science Review, 9 (2), 36-41.10.2478/v10048-009-0006-6
  3. [3] Surkov, V., Hayakawa, M. (2014). Ultra and Extremely Low Frequency Electromagnetic Fields. Springer.10.1007/978-4-431-54367-1
  4. [4] International Commission on Non-Ionizing Radiation Protection (ICNIRP). (2009). Exposure to High Frequency Electromagnetic Fields, Biological Effects and Health Consequences (100 kHz - 300 GHz): Review of the Scientific Evidence on Dosimetry, Biological Effects, Epidemiological Observations, and Health Consequences Concerning Exposure to High Frequency Electromagnetic Fields (100 kHz - 300 GHz). ICNIRP, ISBN 978-3-934994-10-2.
  5. [5] Prechter, R. (1999). The Wave Principle of Human Social Behavior and the New Science of Socionomics. New Classics Library.
  6. [6] Miller, R.A., Miller, I. (2003). The Schumann’s resonances and human psychobiology. Nexus Magazine, 10 (3).
  7. [7] Urban, R., Holcner, V. (2010). Educating for the future challenges in military education at the beginning of the 21st century. In Securitate şi apărare europeană în contextul crizei economico-financiare. Bucharest, Romania: Editura Universităţii Naţionale de Apărare “Carol I”, ISBN 978-973-663-809-1, 128-135.
  8. [8] Falkenstein, M., Hoormann, J., Christ, S., Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51 (2-3), 87-107.10.1016/S0301-0511(99)00031-9
  9. [9] Thought Technology Ltd. Operations manual.
  10. [10] MacLeod, C.M. (1992). The Stroop task: The “gold standard” of attentional measures. Journal of Experimental Psychology: General, 121 (1), 12-14.10.1037/0096-3445.121.1.12
  11. [11] Hanzelka, M., Dan, J., Fiala, P., Steinbauer, M., Holcner, V. (2015). Experiments with sensing and evaluation of ionosphere changes and their impact on the human organism. In MEASUREMENT 2015: 10th International Conference on Measurement. Bratislava, Slovak Republic: Institute of Measurement Science, Slovak Academy of Sciences, 173-176.
  12. [12] McCraty, R. (2010). Coherence: Bridging personal, social and global health. Alternative Therapies in Health and Medicine, 16 (4), 10-24.
  13. [13] NASA. (2015). The solar wind. http://solarscience.msfc.nasa.gov/SolarWind.shtml
  14. [14] Krampen, G. (2006). Änderungssensitive Symptomliste zu Entspannungserleben, Wohlbefinden, Beschwerden und Problembelastungen (ASS-SYM). Göttingen: Hogrefe.
  15. [15] Dan, J. (2009). Lüscher – Color – Diagnostik. Tschechische Version. In Lüscher – Color – Diagnostik. Brunnen/Schweiz, 1.-4.10.2009. 2009.
  16. [16] Štastný, P. (2015). Solar Activity : Analytical Software in xls. Brno.
  17. [17] Berens, L., Nardi, D. (1999). The Sixteen Personality Types: Descriptions for Self-Discovery. Radiance House.
  18. [18] Dan, J., Edelmann, A. (2013). Max Lüschers Color Test.
  19. [19] Woodworth, R.S., Schlosberg, H. (1959). Experimentálna psychológia (Experimental Psychology). Bratislava, Slovak Republic: VEDA, the Publishing House of the Slovak Academy of Sciences, 149-176. (in Slovak)
  20. [20] McCraty, R., Atkinson, M., Tiller, W.A., Rein, G., Watkins, A.D. (1995). The effects of emotions on short-term power spectrum analysis of heart rate variability. American Journal of Cardiology, 76 (14), 1089-1093.10.1016/S0002-9149(99)80309-9
  21. [21] Umetani, K., Singer, D.H., McCraty, R., Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. Journal of the American College of Cardiology, 31 (3), 593-601.10.1016/S0735-1097(97)00554-8
  22. [22] Levy, B.R., Slade, M.D., Kunkel, S.R., Kasl, S.V. (2002). Longevity increased by positive self-perceptions of aging. Journal of Personality and Social Psychology, 83 (2), 261-270.10.1037/0022-3514.83.2.261
  23. [23] Lindmark, S., Lonn, L., Wiklund, U., Tufvesson, M., Olsson, T., Eriksson, J.W. (2005). Dysregulation of the autonomic nervous system can be a link between visceral adiposity and insulin resistance. Obesity Research, 13 (4), 717-728.10.1038/oby.2005.81
  24. [24] Saul, J.P., Arai, Y., Berger, R.D., Lilly, L.S., Colucci, W.S., Cohen, R.J. (1988). Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. American Journal of Cardiology, 61 (15), 1292-1299.10.1016/0002-9149(88)91172-1
  25. [25] Beauchaine, T. (2001). Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13 (2), 183-214.10.1017/S095457940100201211393643
  26. [26] Thayer, J.F., Hansen, A.L., Saus-Rose, E., Johnsen, B.H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37 (2), 141-153.10.1007/s12160-009-9101-z19424767
  27. [27] McCrea, I.W., Jones, T.B., Schlegel, K., Tuomo, N. (1991). COSCAT, a new auroral radar facility on 930 MHz - system description and first results. Annales Geophysicae, 9, 461-469.
  28. [28] Lehrer, P., Vaschillo, E., Lu, S.E., Eckberg, D. Vaschillo, B., Scardella, A., Habib, R. (2006). Heart rate variability biofeedback: Effects of age on heart rate variability, baroreflex gain, and asthma. Chest, 129 (2), 278-284.10.1378/chest.129.2.27816478842
  29. [29] Foreman, R. (1997). Organisation of visceral input. In Anesthesia: Biologic Foundations. Lippincott-Raven Publishers, 663-683.
  30. [30] Siegel, G., Ebeling, B.J., Hofer, H.W., Nolte, J., Roedel, H., Klubendorf, D. (1984). Vascular smooth muscle rhythmicity. In Mechanisms of Blood Pressure Waves. Japan Scientific Societies Press; Springer, 319-338.
  31. [31] Baselli, G., Cerutti, S., Badilini, F., Biancardi, L., Porta, A., Pagani, M., Lombardi, F., Rimoldi, O., Furlan, R., Malliani, A. (1994). Model for the assessment of heart period variability interactions of respiration influences. Medical and Biological Engineering and Computing, 32 (2), 143-152.10.1007/BF025189118022210
  32. [32] Phinyomark, A., Limsakul, C., Phukpattaranont, P. (2011). Application of wavelet analysis in EMG feature extraction for pattern classification. Measurement Science Review, 11 (2), 45-52.10.2478/v10048-011-0009-y
  33. [33] Mishra, P., Singla, S.K. (2013). Artifact removal from biosignal using fixed point ICA algorithm for preprocessing in biometric recognition. Measurement Science Review, 13 (1), 7-11.
  34. [34] Unakafov, A. (2009). Analysis and modeling of the galvanic skins response spontaneous component in the context of intelligent biofeedback systems development. Measurement Science Review, 9 (2), 36-41.10.2478/v10048-009-0006-6
Language: English
Page range: 37 - 47
Submitted on: Jul 3, 2016
Accepted on: Jan 24, 2017
Published on: Feb 23, 2017
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 M. Hanzelka, J. Dan, M. Šlepecky, V. Holcner, P. Dohnal, R. Kadlec, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.