Have a personal or library account? Click to login
Measurement of Transient Permeability of Sp2/0 Myeloma Cells: Flow Cytometric Study Cover

References

  1. [1] Gehl, J. (2003). Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica Scandinavica, 177 (4), 437-447.10.1046/j.1365-201X.2003.01093.x12648161
  2. [2] Kotnik, T., Kramar, P., Pucihar, G., Miklavcic, D., Tarek, M. (2012). Cell membrane electroporation - Part 1: The phenomenon. IEEE Electrical Insulation Magazine, 28 (5), 14-23.10.1109/MEI.2012.6268438
  3. [3] Yarmush, M.L., Golberg, A., Serša, G., Kotnik, T., Miklavčič, D. (2014). Electroporation-based technologies for medicine: Principles, applications, and challenges. Annual Review of Biomedical Engineering, 16 (1), 295-320.10.1146/annurev-bioeng-071813-10462224905876
  4. [4] Subhra, T., Wang, P., Gang, F. (2013). Electroporation based drug delivery and its applications. In Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies. InTech, 61-98.10.5772/55369
  5. [5] Haberl, S., Miklavcic, D., Sersa, G., Frey, W., Rubinsky, B. (2013). Cell membrane electroporation - Part 2: The applications. IEEE Electrical Insulation Magazine, 29 (1), 29-37.10.1109/MEI.2013.6410537
  6. [6] Jiang, C., Davalos, R.V., Bischof, J.C. (2015). A review of basic to clinical studies of irreversible electroporation therapy. IEEE Transactions on Biomedical Engineering, 62 (1), 4-20.10.1109/TBME.2014.236754325389236
  7. [7] Teissié, J., Golzio, M. (2014). Electropermeabilization of the cell membrane. In Encyclopedia of Applied Electrochemistry. Springer, 773-782.10.1007/978-1-4419-6996-5_265
  8. [8] Zou, Y., Wang, C., Peng, R., Wang, L., Hu, X. (2015). Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields. Bioelectrochemistry, 102, 64-72.10.1016/j.bioelechem.2014.12.00225528063
  9. [9] Spugnini, E.P., Melillo, A., Quagliuolo, L., Boccellino, M., Vincenzi, B., Pasquali, P. et al. (2014). Definition of novel electrochemotherapy parameters and validation of their in vitro and in vivo effectiveness. Journal of Cellular Physiology, 229 (9), 1177-1181.10.1002/jcp.2454824403005
  10. [10] Blumrosen, G., Abazari, A., Golberg, A., Tonner, M., Yarmush, M.L. (2014). Efficient procedure and methods to determine critical electroporation parameters. In 2014 IEEE 27th International Symposium on Computer-Based Medical Systems. IEEE, 314-318.10.1109/CBMS.2014.18
  11. [11] Pucihar, G., Krmelj, J., Reberšek, M., Napotnik, T.B., Miklavčič, D., Reberšek, M. et al. (2011). Equivalent pulse parameters for electroporation. IEEE Transactions on Biomedical Engineering, 58 (11), 3279-3288.10.1109/TBME.2011.2167232
  12. [12] Pucihar, G., Kotnik, T., Kandušer, M., Miklavčič, D. (2001). The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry, 54 (2), 107-15.10.1016/S1567-5394(01)00117-7
  13. [13] Rols, M.P., Teissié, J. (1990). Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophysical Journal, 58 (5), 1089-1098.
  14. [14] Vernier, P.T., Sun, Y., Gundersen, M.A., Vernier, P., Sun, Y., Marcu, L. et al. (2006). Nanoelectropulsedriven membrane perturbation and small molecule permeabilization. BMC Cell Biology, 7 (1), 37.10.1186/1471-2121-7-37
  15. [15] Napotnik, T.B., Wu, Y.-H., Gundersen, M.A., Miklavčič, D., Vernier, P.T. (2012). Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics, 33 (3), 257-264.10.1002/bem.20707
  16. [16] Djuzenova, C.S., Zimmermann, U., Frank, H., Sukhorukov, V.L., Richter, E., Fuhr, G. (1996). Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochimica et Biophysica Acta - Biomembranes, 1284 (2), 143-152.10.1016/S0005-2736(96)00119-8
  17. [17] Sadik, M.M., Li, J., Shan, J.W., Shreiber, D.I., Lin, H. (2013). Quantification of propidium iodide delivery using millisecond electric pulses: Experiments. Biochimica et Biophysica Acta - Biomembranes, 1828 (4), 1322-1328.10.1016/j.bbamem.2013.01.00223313458
  18. [18] Demiryurek, Y., Nickaeen, M., Zheng, M., Yu, M., Zahn, J.D., Shreiber, D.I. et al. (2015). Transport, resealing, and re-poration dynamics of two-pulse electroporation-mediated molecular delivery. Biochimica et Biophysica Acta - Biomembranes, 1848 (8), 1706-1714.10.1016/j.bbamem.2015.04.00725911207
  19. [19] Gowrishankar, T.R., Pliquett, U., Lee, R.C. (1999). Dynamics of membrane sealing in transient electropermeabilization of skeletal muscle membranes. Annals of the New York Academy of Sciences, 888 195-210.10.1111/j.1749-6632.1999.tb07957.x10842634
  20. [20] Saulis, G. (2010). Kinetics of pore formation and disappearance in the cell during electroporation. In Advanced Electroporation Techniques in Biology and Medicine. CRC Press, 213-237.
  21. [21] Lamberti, P., Romeo, S., Sannino, A., Zeni, L., Zeni, O. (2015). The role of pulse repetition rate in nsPEFinduced electroporation: A biological and numerical investigation. IEEE Transactions on Biomedical Engineering, 62 (9), 2234-2243.10.1109/TBME.2015.241981325850084
  22. [22] Kulbacka, J., Pucek, A., Wilk, K.A., Dubińska- Magiera, M., Rossowska, J., Kulbacki, M. et al. (2016). The effect of millisecond pulsed electric fields (msPEF) on intracellular drug transport with negatively charged large nanocarriers made of solid lipid nanoparticles (SLN): In vitro study. The Journal of Membrane Biology, 249 (5), 645-661.10.1007/s00232-016-9906-1504584527173678
  23. [23] Ford, W.E., Ren, W., Blackmore, P.F., Schoenbach, K.H., Beebe, S.J. (2010). Nanosecond pulsed electric fields stimulate apoptosis without release of proapoptotic factors from mitochondria in B16f10 melanoma. Archives of Biochemistry and Biophysics, 497 (1-2), 82-89.10.1016/j.abb.2010.03.008
  24. [24] Wezgowiec, J., Derylo, M.B., Teissie, J., Orio, J., Rols, M.-P., Kulbacka, J. et al. (2013). Electric fieldassisted delivery of photofrin to human breast carcinoma cells. The Journal of Membrane Biology, 246 (10), 725-735.10.1007/s00232-013-9533-z
  25. [25] Novickij, V., Grainys, A., Butkus, P., Tolvaišienė, S., Švedienė, J., Paškevičius, A., Novickij, J. (2016). High-frequency submicrosecond electroporator. Biotechnology and Biotechnological Equipment, 30 (3), 607-613.10.1080/13102818.2016.1150792
  26. [26] Michie, J., Janssens, D., Cilliers, J., Smit, B.J., Böhm, L. (2000). Assessment of electroporation by flow cytometry. Cytometry, 41, 96-101.10.1002/1097-0320(20001001)41:2<;96::AID-CYTO3>3.0.CO;2-F
  27. [27] Bier, M., Hammer, S.M., Canaday, D.J., Lee, R.C. (1999). Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics, 20 (3), 194-201.10.1002/(SICI)1521-186X(1999)20:3<;194::AID-BEM6>3.0.CO;2-0
  28. [28] Lazniewska, J., Janaszewska, A., Miłowska, K., Caminade, A.M., Mignani, S., Katir, N., El Kadib, A., Bryszewska, M., Majoral, J.P., Gabryelak, T., Klajnert-Maculewicz, B. (2013). Promising lowtoxicity of viologen-phosphorus dendrimers against embryonic mouse hippocampal cells. Molecules, 18 (10), 12222-12240.
Language: English
Page range: 300 - 304
Submitted on: Sep 9, 2016
Accepted on: Nov 25, 2016
Published on: Dec 13, 2016
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2016 Vitalij Novickij, Irutė Girkontaitė, Audrius Grainys, Auksė Zinkevičienė, Eglė Lastauskienė, Jurgita Švedienė, Algimantas Paškevičius, Svetlana Markovskaja, Jurij Novickij, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.