Have a personal or library account? Click to login
Theoretical and Experimental Research of Error of Method of Thermocouple with Controlled Profile of Temperature Field Cover

Theoretical and Experimental Research of Error of Method of Thermocouple with Controlled Profile of Temperature Field

By: Su Jun,  O. Kochan,  Wang Chunzhi and  R. Kochan  
Open Access
|Dec 2015

References

  1. [1] Lutsyk, Y., Hook, O., Lakh, O., Stadnyk, B. (2006). Temperature Measurements: Theory and Practice. Lviv, Ukraine: Beskyd Bit. (in Ukrainian)
  2. [2] Webster, J. (1999). Measurement, Instrumentation, and Sensors Handbook. CRC Press.
  3. [3] Habisreuther, T., Elsmann, T., Pan, Z., Graf, A., Willsch, R., Schmidt, M.A. (2015). Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Applied Thermal Engineering, 91, 860-865.10.1016/j.applthermaleng.2015.08.096
  4. [4] Yi, X., Liu, C. (2009). Development of high-precision temperature measurement system based on ARM. In Proceedings of 9th International Conference on Electronic Measurement and Instruments, 16-19 August, 2009, Beijing, China. IEEE, 795-799.
  5. [5] Koči, V., Koči, J., Korecky, T., Maděra, J., Černy, R. (2015). Determination of radiative heat transfer coefficient at high temperatures using a combined experimental-computational technique. Measurement Science Review, 15 (2), 85-91.10.1515/msr-2015-0013
  6. [6] Glowacz, A., Glowacz, A., Glowacz, Z. (2015). Recognition of thermal images of direct current motor with application of area perimeter vector and bayes classifier. Measurement Science Review, 15 (3), 119-126.10.1515/msr-2015-0018
  7. [7] Sloneker, K.C. (2009). Thermocouple inhomogeneity. Ceramic Industry, 159 (4), 13-18.
  8. [8] Kortvelyessy, L. (1981). Thermoelement Praxis. Essen, Germany: Vulkan-Verlag. (in German)
  9. [9] Glowacz, A., Glowacz, A., Korohoda, P. (2014). Recognition of monochrome thermal images of synchronous motor with the application of binarization and nearest mean classifier. Archives of Metallurgy and Materials, 59 (1), 31-34.10.2478/amm-2014-0005
  10. [10] Park, R.M. (ed.) (1993). Manual on the Use of Thermocouples in Temperature Measurement. ASTM International.
  11. [11] Abdelaziz, Y., Edler, F. (2009) A method for evaluation of the inhomogeneity of thermoelements. Measurement Science and Technology, 20 (5), 055102.10.1088/0957-0233/20/5/055102
  12. [12] Pearce, J.V. (2007). Quantitative determination of the uncertainty arising from the inhomogeneity of thermocouples. Measurement Science and Technology, 18, 3489-3495.10.1088/0957-0233/18/11/032
  13. [13] Tamba, J., Yamazawa, K., Masuyama, S., Ogura, H., Izuchi, M. (2011). Evaluating the inhomogeneity of thermocouples using a pressure-controlled water heat pipe. International Journal of Thermophysics, 32, 2436-2451.10.1007/s10765-011-1084-x
  14. [14] Webster, E.S., White, D.R., Edgar, H. (2015). Measurement of inhomogeneities in MIMS thermocouples using a linear-gradient furnace and dual heat-pipe scanner. International Journal of Thermophysics, 36, 444-466.10.1007/s10765-014-1810-2
  15. [15] Su Jun, Kochan, O. (2014). The mechanism of the occurrence of acquired thermoelectric inhomogeneity of thermocouples and its effect on the result of temperature measurement. Measurement Techniques, 57 (10), 1160-1166.
  16. [16] Kortvelyessy, L. (1998). Thermoelement Praxis : Neue theoretische Grundlagen und deren Umsetzung, 3rd ed. Essen, Germany: Vulkan-Verlag. (in German)
  17. [17] Holmsten, M., Ivarsson, J., Falk, R., Lidbeck, M., Josefson, L.-E. (2008). Inhomogeneity measurements of long thermocouples using a short movable heating zone. International Journal of Thermophysics, 29 (3), 915-925.10.1007/s10765-008-0418-9
  18. [18] Isotermal Technology Ltd. (1999). Temperature calibration with isotech block baths.
  19. [19] Buschfort, H.G., Hundere, A. (1968). Self-calibrating temperature sensing probe and probe - indicator combination. U.S. Patent 3,499,340. Washington, D.C.: U.S. Patent and Trademark Office.
  20. [20] Sachenko, A., Kochan, V., Turchenko, V. (2000). Sensor drift prediction using neural networks. In Proceedings of International Workshop on Virtual and Intelligent Measurement Systems (VIMS'2000), 29-30 April, 2000, Annapolis, USA, 88-92.
  21. [21] Zvizdic, D., Sestan, D. (2015). Zinc-filled multientrance fixed point. International Journal of Thermophysics, 36, 336-346.10.1007/s10765-015-1846-y
  22. [22] Su Jun, Kochan, O. (2014). Investigations of thermocouple drift irregularity impact on error of their inhomogeneity correction. Measurement Science Review, 14 (1), 29-34.10.2478/msr-2014-0005
  23. [23] White, W.P. (1906). The constancy of thermoelements. Physical Review, 23, 449-474.
  24. [24] Roeser, W., Wensel, H. (1935). Methods of testing thermocouples and thermocouple materials. Journal of Research of the National Bureau of Standards, 14, 247-282.10.6028/jres.014.010
  25. [25] Hill, K.D., Gee, D.J. (2012). Quantifying the calibration uncertainty attributable to thermocouple inhomogeneity. In Proceedings of the 9th International Temperature Symposium Temperature: Its Measurement and Control in Science and Industry, 19-23 March, 2012, Los Angeles, USA. AIP 1552, vol. 8, 520- 525.
  26. [26] Failleau. G., Elliott, C.J., Deuze, T., Pearce, J.V., Machin, G., Sadli, M. (2014). Miniature fixed-point cell approaches for in situ monitoring of thermocouple stability. International Journal of Thermophysics, 35, 1223-1238.10.1007/s10765-014-1667-4
  27. [27] Strnad, R., Jelinek, M., Failleau, G., et al. (2014). Drift a doba života termoelektrickych članků při vysokych teplotach. Automa, 6, 28-31. (in Czech)
  28. [28] Kochan, О., Kochan, R., Bojko, O., Chyrka, M. (2007). Temperature measurement system based on thermocouple with controlled temperature field. In Proceedings of the 4th IEEE International Workshop IDAACS’2007, 6-8 September, 2007, Dortmund, Germany. IEEE, 47-51.10.1109/IDAACS.2007.4488370
  29. [29] International Electrotechnical Commission. (1989). Thermocouples. Part 2: Tolerances. IEC 584-2.
  30. [30] Lienhard, J.H. V., Lienhard, J.H. IV. (2008). A Heat Transfer Textbook. Cambridge: Phlogiston Press.
  31. [31] Su Jun, Kochan, O., Kochan, R. (2015). Evaluation of error of method of thermocouple with controlled profile of temperature filed. In Proceedings of the 10th International Conference on Measurement (Measurement 2015), 25-28 May 2015, Smolenice, Slovakia. Bratislava, Slovakia: IMS SAS, 301-304.
  32. [32] Kuchling, H. (1980). Taschenbuch der Physik. Leipzig: VEB Fachbuchferlag. (in German)
  33. [33] Glowacz, A., Glowacz, A., Glowacz, Z. (2014). Recognition of monochrome thermal images of synchronous motor with the application of quadtree decomposition and backpropagation neural network. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (1), 92-96.
  34. [34] Krolczyk, G.M., Legutko, S. (2014). Experimental analysis by measurement of surface roughness variations in turning process of duplex stainless steel. Metrology and Measurement Systems, 21 (4), 759-770.10.2478/mms-2014-0060
  35. [35] Hreha, P., Radvanska, A., Knapcikova, L., Krolczyk, G.M., Legutko, S., Krolczyk, J., Hloch, S., Monka, P. (2015). Roughness parameters calculation by means on-line vibration monitoring emerging from AWJ interaction with material. Metrology and Measurement Systems, 22 (2), 315-326.10.1515/mms-2015-0024
  36. [36] Hughes, I.G., Hase, T.P.A. (2010). Measurements and Their Uncertainties. A Practical Guide to Modern Error Analysis. Oxford University Press.
Language: English
Page range: 304 - 312
Submitted on: Sep 19, 2015
Accepted on: Dec 1, 2015
Published on: Dec 30, 2015
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2015 Su Jun, O. Kochan, Wang Chunzhi, R. Kochan, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.