Have a personal or library account? Click to login
Image Reconstruction Method with the Exploitation of the Spatial Correlation for Electrical Capacitance Tomography Cover

Image Reconstruction Method with the Exploitation of the Spatial Correlation for Electrical Capacitance Tomography

By: Jing Lei and  Shi Liu  
Open Access
|Dec 2015

References

  1. [1] Xie, C.G., Huang, S.M., Hoyle, B.S., Thorn, R., Lenn, C., Snowden, D., Beck, M.S. (1992). Electrical capacitance for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors. IEE Proceedings G - Circuits, Devices and Systems, 139 (1), 89-98.10.1049/ip-g-2.1992.0015
  2. [2] Tikhonov, A.N., Arsenin, V.Y. (1977). Solution of Ill- Posed Problems. New York: V.H. Winston & Sons.
  3. [3] Landweber, L. (1951). An iteration formula for fredholm integral equations of the first kind. American Journal of Mathematics, 73 (3), 615-624.10.2307/2372313
  4. [4] Yang, W.Q., Spink, D.M., York, T.A., McCann, H. (1999). An image reconstruction algorithm based on Landweber’s iteration method for electrical capacitance tomography. Measurement Science and Technology, 10 (11), 1065-1069.10.1088/0957-0233/10/11/315
  5. [5] Jang, J.D., Lee, S.H., Kim, K.Y., Choi, B.Y. (2006). Modified iterative Landweber method in electrical capacitance tomography. Measurement Science and Technology, 17 (7), 1909-1917.10.1088/0957-0233/17/7/032
  6. [6] Liu, S., Fu, L., Yang, W.Q., Wang, H.G., Jiang, F. (2004). Prior-online iteration for image reconstruction with electrical capacitance tomography. IEE Proceedings - Science, Measurement and Technology, 151 (3), 195-200.10.1049/ip-smt:20040246
  7. [7] Yang, W.Q., Peng, L.H. (2003). Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology, 14 (1), L1- L13.10.1088/0957-0233/14/1/201
  8. [8] Su, B.L., Zhang, Y.H., Peng, L.H., Yao, D.Y., Zhang, B.F. (2000). The use of simultaneous iterative reconstruction technique for electrical capacitance tomography. Chemical Engineering Journal, 77 (1), 37-41.
  9. [9] Mou, C.H., Peng, L.H., Yao, D.Y., Xiao, D.Y. (2005). Image reconstruction using a genetic algorithm for electrical capacitance tomography. Tsinghua Science and Technology, 10 (5), 587-592.
  10. [10] Takei, M. (2006). GVSPM image reconstruction for capacitance CT images of particles in a vertical pipe and comparison with the conventional method. Measurement Science and Technology, 17 (8), 2104-2112.10.1088/0957-0233/17/8/008
  11. [11] Soleimani, M., Lionheart, W.R.B. (2005). Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Measurement Science and Technology, 16 (10), 1987-1996.10.1088/0957-0233/16/10/014
  12. [12] Wang, H.X., Tang, L., Cao, Z. (2007). An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT. Flow Measurement and Instrumentation, 18 (5-6), 262-267.10.1016/j.flowmeasinst.2007.07.004
  13. [13] Fang, W.F. (2004). A nonlinear image reconstruction algorithm for electrical capacitance tomography. Measurement Science and Technology, 15 (10), 2124-2132.10.1088/0957-0233/15/10/023
  14. [14] Lei, J., Liu, S., Guo, H.H., Li, Z.H., Li, J.T., Han, Z.X. (2011). An image reconstruction algorithm based on the semiparametric model for electrical capacitance tomography. Computers and Mathematics with Applications, 61 (9), 2843-2853.10.1016/j.camwa.2011.03.060
  15. [15] Ortiz-Aleman, C., Martin, R., Gamio, J.C. (2004). Reconstruction of permittivity images from capacitance tomography data by using very fast simulated annealing. Measurement Science and Technology, 15 (7), 1382-1390.10.1088/0957-0233/15/7/022
  16. [16] Warsito, W., Fan, L.S. (2001). Neural network based multi-criterion optimization image reconstruction technique for imaging two-and three-phase flow systems using electrical capacitance tomography. Measurement Science and Technology, 12, 2198-2210.10.1088/0957-0233/12/12/323
  17. [17] Banasiak, R., Soleimani, M. (2010). Shape based reconstruction of experimental data in 3D electrical capacitance tomography. NDT & E International, 43 (3), 241-249.10.1016/j.ndteint.2009.12.001
  18. [18] Cao, Z., Xu, L.J., Fan, W.R., Wang, H.X. (2011). Electrical capacitance tomography for sensors of square cross sections using Calderon’s method. IEEE Transactions on Instrumentation and Measurement, 60 (3), 900-907.10.1109/TIM.2010.2045255
  19. [19] Li, Y., Yang, W.Q. (2008). Image reconstruction by nonlinear Landweber iteration for complicated distributions. Measurement Science and Technology, 19, 1-8.10.1088/0957-0233/19/9/094014
  20. [20] Cao, Z., Xu, L.J., Wang, H.X. (2010). Electrical capacitance tomography with a non-circular sensor using the dbar method. Measurement Science and Technology, 21 (1), 1-6. 10.1088/0957-0233/21/1/015502
  21. [21] Watzenig, D., Brandner, M., Steiner, G. (2007). A particle filter approach for tomographic imaging based on different state-space representations. Measurement Science and Technology, 18 (1), 30-40.10.1088/0957-0233/18/1/004
  22. [22] Soleimani, M., Vauhkonen, M., Yang, W.Q., Peyton, A., Kim, B.S., Ma, X.D. (2007). Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter. Measurement Science and Technology, 18 (11), 3287-3294.10.1088/0957-0233/18/11/004
  23. [23] Lei, J., Liu, S., Wang, X.Y. (2012). Dynamic inversion in electrical capacitance tomography using the ensemble Kalman filter. IET Science, Measurement and Technology, 6 (1), 63-77.10.1049/iet-smt.2011.0193
  24. [24] Soleimani, M., Mitchell, C.N., Banasiak, R., Wajman, R., Adler, A. (2009). Four-dimensional electrical capacitance tomography imaging using experimental data. Progress in Electromagnetics Research-PIER, 90 (1), 171-186.10.2528/PIER09010202
  25. [25] Liu, X. (2011). Meshfree Method. Beijing: Science Press.
  26. [26] Liu, G.R. (2010). Meshfree Methods: Moving Beyond the Finite Element Method (2nd ed.). Taylor & Francis Group.
  27. [27] Goswami, J.C., Chan, A.K. (1999). Fundamentals of Wavelet: Theory, Algorithm and Applications. New York: John Willy & Sons.
  28. [28] Liu, T., Zeng, X.L., Zeng, J. (2006). An Induction for Practical Wavelet Analysis. Beijing: National Defense Industry Press.
  29. [29] Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.M. (2007). Wavelets and Their Applications. Herms Science.10.1002/9780470612491
  30. [30] Golik, W.L. (1998). Wavelet packets for fast solution of electromagnetic integral equations. IEEE Transactions on Antennas and Propagation, 46 (5), 618-624.10.1109/8.668902
  31. [31] Xu, C., Zhao, R.Z., Gan, X.B. (2004). Wavelet Analysis and Applied Algorithms. Beijing: Science Press.
  32. [32] Zhang, Z., Shi, Y., Ding, W., Yin, B. (2013). MR images reconstruction based on TVWL2-L1 model. Journal of Visual Communication and Image Representation, 24 (2), 187-195. 10.1016/j.jvcir.2012.05.006
  33. [33] Rudin, L.I., Osher, S., Fatemi E. (1992). Nonlinear total variation based noise removal algorithms. Physic D, 60 (1-4), 259-268.10.1016/0167-2789(92)90242-F
  34. [34] Li, Y., Osher, S. (2009). A new median formula with applications to PDE based denoising. Communications in Mathematical Sciences, 7 (3), 741-753.10.4310/CMS.2009.v7.n3.a11
  35. [35] Papafitsoros, K., Schonlieb, C.B., Sengul, B. (2013). Combined first and second order total variation inpainting using split Bregman. Image Processing On Line, 3, 112-136.10.5201/ipol.2013.40
  36. [36] Chan, T.F., Wong, C.K. (2000). Convergence of the alternating minimization algorithm for blind deconvolution. Linear Algebra and its Applications, 316 (1-3), 259-285.10.1016/S0024-3795(00)00141-5
  37. [37] Xiao, Y., Zeng, T., Yu, J., Ng, M.K. (2011). Restoration of images corrupted by mixed Gaussianimpulse noise via L1-L0 minimization. Pattern Recognition, 44 (8), 1708-1720.10.1016/j.patcog.2011.02.002
  38. [38] Lv, X.G., Song, Y.Z., Wang, S.X., Le, J. (2013). Image restoration with a high-order total variation minimization method. Applied Mathematical Modelling, 37 (16-17), 8210-8224.10.1016/j.apm.2013.03.028
  39. [39] Blondel, M., Seki, K., Uehara, K. (2013). Block coordinate descent algorithms for large-scale sparse multiclass classification. Machine Learning, 93 (1), 31-52.10.1007/s10994-013-5367-2
  40. [40] Qin, Z., Scheinberg, K., Goldfarb, D. (2013). Efficient block-coordinate descent algorithms for the group lasso. Mathematical Programming Computation, 5 (1), 143-169.10.1007/s12532-013-0051-x
  41. [41] Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 109 (3), 475-494.10.1023/A:1017501703105
  42. [42] Xu, Y., Yin, W. (2013). A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences, 6 (3), 1758-1789.10.1137/120887795
  43. [43] Goldstein, T., Osher, S. (2009). The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2 (2), 323-343. 10.1137/080725891
Language: English
Page range: 284 - 293
Submitted on: Apr 22, 2015
Accepted on: Dec 1, 2015
Published on: Dec 30, 2015
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2015 Jing Lei, Shi Liu, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.